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Non-invertible symmetry-protected topological order in a group-based cluster state
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Despite growing interest in beyond-group symmetries in quantum condensed matter systems,
there are relatively few microscopic lattice models explicitly realizing these symmetries, and many
phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabi-
lizer Hamiltonian composed of group-based Pauli operators whose ground state is a G x Rep(G)-
symmetric state: the G cluster state introduced in [Brell, New Journal of Physics 17, 023029
(2015)]. We show that this state lies in a symmetry-protected topological (SPT) phase protected
by G x Rep(G) symmetry, distinct from the symmetric product state by a duality argument. We
identify several signatures of SPT order, namely protected edge modes, string order parameters,
and topological response. We discuss how G cluster states may be used as a universal resource for
measurement-based quantum computation, explicitly working out the case where G is a semidirect

product of abelian groups.
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I. INTRODUCTION

Symmetry is a central organizing principle and compu-
tational tool in the study of condensed matter physics.
Conventionally, we think of a family of symmetry opera-
tors which:

1. act on the full system, e.g., as a tensor product “on-
site” (internal) symmetry or by realizing a transfor-
mation, such as rotation or inversion, of the under-
lying lattice; and

2. multiply according to the multiplication rule of
some group.

However, this is not the most general situation. Exotic
phenomena can be described by symmetries which vio-
late one or both of the above criteria. In loosening the
definition of symmetry, we are able to unify a wider fam-
ily of quantum phases within a single framework and ex-
plore novel phases which pose challenges of theoretical
and practical interest (see e.g. [1, 2]).

Rich physics has emerged from the study of two par-
ticular generalizations of global symmetry which act on
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only part of the system and therefore relax the first con-
straint above — higher form symmetry [3-6] and subsys-
tem symmetry [7—11]. Both types of symmetry act on
subsets of local degrees of freedom, such as qubits or qu-
dits, that make up manifolds of nonzero codimension in
the geometry of the many-body system.

Higher form symmetries act on homologically non-
trivial manifolds and are deformable within their homol-
ogy class via the Gauss law of a gauge theory [9, 12, 13].
A notable 1-form symmetry operator [3] is the Wil-
son loop operator, which acts on a subsystem that
forms a closed loop and which distinguishes the con-
fined and deconfined phases of the Zy gauge theory in
2+1D. Other higher form symmetries are important ob-
jects in the design of topological quantum computation
schemes [14, 15].

On the other hand, subsystem symmetries act on rigid
manifolds that are not deformable into one another.
They have become especially important in describing
fracton phases of matter, which have garnered signifi-
cant interest as a particularly exotic form of topological
order where quasiparticle excitations exhibit restricted
mobility [9, 12, 16-22].

Higher form and subsystem symmetries demonstrate
the value of understanding how symmetry can be gener-
alized by violating the first criterion above. Other works
have studied symmetries which violate both constraints
(see e.g. [23-29]), though these symmetries are less well-
understood. In this work, we study a symmetry which is
complementary to the above, as it violates only the sec-
ond criterion, balancing physical richness and tractabil-
ity.

Conventionally, a symmetry in a quantum system is
realized by a set of unitary operators U, which com-
mute with the Hamiltonian and transform as a linear
representation of the symmetry group G, meaning that
UgUy = Ugp. More generally, a set of symmetry opera-
tors {O,} can multiply according to the rules of a fusion
category [30, 31] (equivalently', fusion ring [32, 33] or
fusion algebra [34]),

0,05 =Y Ng,0. (1)

where a, b, and ¢ are simple objects in the category, and
where the fusion coefficients N¢, € Zq give the number
of copies of each O, appearing in the sum. We write these
symmetry operators as O rather than U because they are
not in general unitary.

1 Fusion categories share fusion rules with fusion rings and al-
gebras, but are equipped with additional structure, such as F-
symbols which encode the degree of associativity of fusion of vec-
tor spaces defined within the category. The topic of constructing
fusion categories from a fusion ring is called categorification. Be-
cause we only use the fusion rules of the category, we are ignoring
these subtleties.

Where multiplication in a group yields another ele-
ment in the group (g - h = gh), multiplication in a fu-
sion category yields a sum of objects in the category
(axb=73 . Ng,c). Groups are special cases of fusion

categories where NV ;h = Ok,gn, and when we refer to fu-
sion category symmetries we implicitly mean symmetries
corresponding to fusion categories that are not groups.

The fusion category perhaps most familiar to physi-
cists — though not necessarily by name — is SU(2); [35-
37], which describes the fusion of the first k + 1 irreps of
SU(2) [38]. Physically, this describes addition of angu-
lar momentum restricted to particles of spin less than or
equal to k/2, encoding relationships like % ® % =01
As an explicit example, consider the multiplication table
of SU(2)s:

SU(2):

Notice that the fusion rules of SU(2)s are beyond what
can be described by a group. Most strikingly, they al-
low for the product of two objects to equal a sum of
objects. This is a central feature of the generalization
from groups to fusion categories, and leads to the exis-
tence of non-invertible simple objects, and therefore non-
invertible symmetries.

The study of fusion categories — and their descendants,
like unitary modular tensor categories — has been fruitful
in condensed matter physics [39—49]. The foremost appli-
cation is describing fusion and braiding of anyons. While
abelian anyons fuse according to the rules of a group,
non-abelian anyons fuse according to the rules of a fu-
sion category [50]. Non-abelian anyons exhibit a variety
of exotic physics due to their unusual fusion properties,
including universality for topological quantum computa-
tion [51].

In this paper, we construct a microscopic model with
fusion-category SPT order on a 1D lattice of qudits whose
basis states are valued in a finite group G. Our model
reduces to the well-known Zs x Zs abelian SPT order:
the one-dimensional cluster state [52, 53] when G = Zs.
For non-abelian G, the second symmetry factor in the
original abelian order generalizes to Rep(G), the fusion
category of representations of G. Such cases yield mod-
els protected by a combination of group and represen-
tation category symmetry which, to our knowledge, has
not been considered before.

We show how microscopic signatures of SPT order ex-
tend to fusion category-symmetric systems through the
study of the group cluster state (or G cluster state, where
G is a finite group), a generalization of the familiar clus-
ter state [54]. We contribute the following:

1. A proof of the claim in Ref. 55 that the G clus-
ter state is an SPT protected by a fusion category
symmetry.



2. An identification of microscopic signatures of SPT
order in the G cluster state, including string order,
edge modes, and topological response.

3. Further development of the group-based Pauli sta-
bilizer formalism from Ref. 56, making contact with
matrix-product states (MPSs) and matrix-product
operators (MPOs). By studying microscopics of
explicit models as opposed to abstractly classifying
phases, we open up models with such exotic sym-
metries to further study and potential realization
on quantum devices.

4. An algorithm for performing measurement-based
quantum computation on the G cluster state for
a wide class of non-abelian groups, namely those
which are semidirect products of abelian groups.

A. Relation to Prior Works

This paper appears among a growing literature study-
ing exotic phases of matter in lattice models, as well as
studying categorical symmetries [57-82]. Non-invertible
symmetry on the lattice has been discussed in several
works [83-91], though most known lattice models of SPTs
are protected by a conventional, subsystem [92-99], or
higher-form symmetry [6, 100-102]. Ref. 85 is espe-
cially relevant, as it constructs commuting projector lat-
tice models for TQFTs with fusion category symmetry
and shows that degenerate edge modes arise in the SPT
class of these models. While this work is quite general
and its results broadly applicable, it does not study a
model with G x Rep(G) symmetry explicitly, nor does it
study concrete models in great detail, so that our work is
complementary. We also note that our stabilizer model
contains additional structure compared to the commut-
ing projector models constructed therein, as a stabilizer
Hamiltonian can always be expressed as a sum of com-
muting projectors, while the contrary is not guaranteed.

Although there are few explicit lattice constructions,
there is good reason to suspect that the signatures of
SPT order should extend to much more general con-
texts. Macroscopic descriptions of SPT orders with ex-
otic categorical symmetries have been defined within
higher category theory [58, 59]. There has also been
work studying fusion category symmetries in quantum
field theories which have addressed the existence of fusion
category-symmetric gapped phases [60, 61] and gauging
non-abelian symmetries to yield fusion categorical sym-
metries [103]. The question of classifying fusion category-
symmetric gapped phases has also been addressed at the
categorical level [60, 62]. In general, category theoretic
methods are very powerful for studying generalized sym-
metries and the phases they admit. It has been shown
that for a symmetry described by a tensor category C, the
exact module categories over C — equivalently, the fiber
functors which C admits — correspond to the gapped sym-
metric phases with symmetry C [60, 104].

In this work, we use group-based Pauli operators to
define microscopic lattice models, which more closely re-
semble spin chains. This formalism was recently used
in Ref. 56 to study gapped edges of quantum doubles.
Group-based Pauli operators preserve some useful fea-
tures of the stabilizer formalism [105] and are natural
for programming onto quantum devices. These opera-
tors also admit a graphical description as matrix product
operators which makes contact with the tensor network
literature on quantum phases of matter with exotic sym-
metries (see eg. [106-108]).

While we intentionally use group-valued degrees of
freedom to generate fusion category symmetries, they
arise naturally in other areas. High energy physicists
have long studied gauge fields which take values in gauge
symmetry groups, and lattice gauge theories work with
degrees of freedom labeled by group elements living on
the lattice [109-111]. In condensed matter physics, these
degrees of freedom are used to construct Kitaev’s quan-
tum double model, a generalization of the toric code
which hosts non-abelian anyons [112]. Group-valued de-
grees of freedom are also used in the TQFT approach
to constructing microscopic lattice models of SPTs with
conventional symmetry [100, 113-119].

The G cluster state which we study in this work was
first introduced in Ref. 55, which generalizes cluster
states to group-valued qudits, as Kitaev’s quantum dou-
ble model does for the toric code. Ref. 55 conjectures
that G cluster states should exhibit SPT order and be us-
able for measurement-based quantum computation, ideas
which we establish in this paper.

We extend results from the significant body of knowl-
edge which has emerged from the study of SPT's with con-
ventional symmetry. We study microscopic signatures of
SPT order which are well-understood in conventional 1d
SPTs, including edge modes and ground state degener-
acy [52, 114, 120], string order [121-125], and topological
response [126-129]. We also study the G cluster state as a
resource state for MBQC [130, 131], which is known to be
intimately related to cluster states in particular [54, 132—
134] and SPT order in general [135-137].

II. NOTATIONS AND CONVENTIONS

In this section, we introduce the notations and conven-
tions which we use in this paper. Especially important is
Sec. IT C which introduces the group-based Pauli opera-
tors we use extensively.

A. Group Theory

We denote by G a finite group which is in general non-
abelian. For each g € G, the inverse of g is denoted g.
The identity element is denoted e.

Irreducible representations are denoted I' and defined
according to the map I' : G — GLg4.(C), where dr is



the dimension of the representation. I'(g) is the dr x dr
matrix which is obtained when the function I is evaluated
at the group element g. Being representations, the I'
satisfy

['(g)T'(h) = T(gh), (2a)
I'(9)t =T(g), (2b)
I'(g)" =T(g"), (2¢)

[(e) = 14, (2d)

We denote the trivial representation 1, so that 1(g) =1
for all g. The tensor product of irreps of a finite group is
fully decomposable and therefore isomorphic to a direct
sum of irreps

I'i® Fj =~ @NII::F7FI€; (3)
k

where the factor lei’irj € Zx is called the multiplicity

and gives the number of copies of 'y appearing in the
direct sum.

B. Matrix Product States and Operators

Matrix product states (MPS) are tensor network states
in 1d that efficiently represent area law states. A general
MPS is written

[Ya) = Z Tr[BAJ - - Ny s (4)
{g9:}

N
AéN)] ‘gl, .

where Aéz) is the matrix evaluated at site ¢ when g; = ¢
and B encodes the boundary conditions. Diagrammati-
cally, we can express each piece of the MPS as a rank-
three (i.e., three-legged) tensor

S AP el = L (5)

and the entire MPS succinctly as

[a) = T@ % (6)

Similarly, matrix product operators (MPO) are tensor
network operators in 1d. A general MPO O 4 is written

S Al AW
91,91

{94:9}}

7gN><g/11"'7g§V|7

(7)
where A( )h is the matrix evaluated at site ¢ when ¢g; = g
and g, = h, and B encodes the boundary conditions.

qu MICEE

Diagrammatically, we write

ZA” , @ g:)gi] = #

Note that the trace is evaluated clockwise on the red
MPO virtual level.

Sometimes, when we want to emphasize that the
boundary conditions of an MPS or MPO are open, we
will denote them as

C. Group-Based Pauli Operators

In this section, we discuss the notation for group-based
Pauli operators which will be used throughout this work,
largely following the conventions of Ref. 56. Further de-
tails of this construction can be found in Refs. 55 and
56.

We work with a local Hilbert space whose basis kets
are labelled by the elements of a finite group G, which
we typically assume is non-Abelian. The local Hilbert
space is the group algebra C[G], and arbitrary single-site
states may be written as vectors, |¢)) = >_ 5 ¢qg), with
complex coefficients cg.

We make extensive use of group-based Pauli operators
which extend the action of the qudit Pauli operators to
group-valued degrees of freedom. The group-based X-
type operators are labeled by group elements g and act
by group multiplication?:

Xy= 3 lgh)h

heG

X, =3 Ihg)h

heG

o X,h)=lgh), (8a)

= X,h)=|rg). (8b)
Diagrammatically, we have

79:, f@:.

Observe that these operators form the left and right

regular representations [138] of G: X X, = X, and

2 Elsewhere in the literature, these operators are sometimes called
Lg and Ry. We also note that our arrow convention is consistent
with [56] but reverses that of [55].



Zo Qubit Group-Valued Qudit G
Elements {0,1} |0}, 1) lg): g€ G Elements {g € G}
Irreps {4, T_}{|£) = 25 (T+(0) [0) + T+(1) [1)) || Tas) = 1/ & 40 (9))aslg)|  Trreps {T' € Rep(G)}
. Xo=Xo=1 X, k) = lgh) _
Bit-flip Group Multiplication
X =X1=x X, b = |hg)
— — ? |h) = |hgh) Conjugation
Z Zlh =1 Tr[% = Tr[l
Phase +1 T+ = o1y Zrlla) =TC@I9) by o 0(@)]as or T [F(9)]
Zr_ =2} = [Zr]as |9) = [T(9)]as 9)
CX |g) k) = lg) Igh) —_
Controlled X CX|g)|h) =19) g ® h) Controlled Multiplication
CX |g) k) = lg) |hg)

TABLE I. Summary of the group-valued qudit formalism, reproduced with minor edits from Ref. 55. Note that the group and
irrep bases outlined in the first two rows of the table are dual to one another and related by the non-abelian Fourier transform.

ygyh = ygh. In the case G = Zg4, these opera-
tors reduce to the familiar qudit Pauli operators X,

t = X. The group-based X operators also satisfy
the following identities:

The two types of X operators can be combined to form
the conjugation operator:

¥, = X,X, = X, X,

(10)

The group-based Z-type operators are labelled by ir-
J

n

H Z(’)

:ZTr[F

9:€G

gn)llg1,- -

reps I' and act as generalized phase gates:

Zr=)Y T(g®lggl < Zrlg)=T(g9)®]g), (11)
geG

ZL=Y"T@®lglgl = Zllg)=T@ ®lg). (12)
geG

These are matrix product operators (MPOs), with the
irrep matrices acting in the virtual space. In graphical
notation, we have

In order to reduce these MPOs to operators acting
solely on the physical degrees of freedom, we must con-
tract over the virtual space. We can either do this by
tracing over the space — equivalent to imposing periodic
boundary conditions — which is denoted by

,gn><gla~~~vgn| :'” ,

= T(g9) ®lg)g

geqG

(13)

or by choosing a particular matrix element of I', denoted by

=Y (T (@

af 9i€G

[Tz
=1

where the product is taken in ascending order of indices
(clockwise along the loop of virtual links), =— = (¢],
and —a = |f). Here, |a) and |5) are states in the virtual

gn) |B> |glv"'7gn><gla"'agn| : 7

(

Hilbert space of dimension dr, not to be confused with
physical states |g). Notice that Zr is an operator acting
on the physical degrees of freedom, while T'(g) is simply



a matrix.

Sums over Z-type operators labelled by different I' can
be equivalently written as projectors, and this notation is
sometimes used in other works. To go from the Pauli pic-
ture to the projector picture, one uses the delta function
on the group, given by

d _
8§ = > |—C§|mr<gh>1, (14)
I'eRep(G)

where the sum is over the irreps I' of G, and where dr is
the dimension of the I' irrep. For example, a sum over
irreps of single-site Tr[Zr] operators projects onto the
identity state:

d
> g TEr] = le)el, (15)
I'eRep(G)
and the generalized two-site Ising interaction projects
onto the subspace with spins aligned:

Z|G| e[200.22] = Y lo. oMol (16)

where the ‘.’ denotes multiplication in the virtual space.

Group-based Pauli operators have more subtle com-
mutation relations than their qudit counterparts due to
non-commutativity of operators on the virtual space;
the order in which the virtual space matrices are con-
tracted matters. This comes from the fact that I'(g;)
and I'(g;) do not in general commute. Indeed, for any
non-abelian group, there will exist some irrep I' with di-
mension dr > 1 and some g;, g; such that I'(g;) and I'(g;)
do not commute. This is important to keep in mind when
working with the operators algebraically, but becomes
more obvious when working diagrammatically.

The X operators commute with one another when they
act from different sides or on different sites, and follow
the commutation rules of the group otherwise:

[Yy), yg)] -0
(X0 XP] o [X0, X0 o 61,

The commutation relations between X and Z operators
on the same site are given by
(9)-Zr X,

X, 7r =
§QZF = ZF.F(9)§9.

Notice that these operators fail to commute up to a ma-
trix I'(g) or I'(g) acting on the virtual space, rather than
up to a phase as is the case for qubits.

In addition to the computational basis labelled by the
group elements, there exists a dual basis labeled by ma-
trix elements of irreps. These states are defined to be

(17)

(18)

Cap Z 9aslg)- (19)

gGG

It can be shown using the Grand Orthogonality Theo-
rem of group representations [138] that these states form
a complete basis for C[G]. In the qubit case G = Zo,
these states indeed reduce to the states |+) and |—), cor-
responding to I' being the trivial irrep and sign irrep,
respectively?.

It is also sometimes convenient to think of the set of
character states

IT) = \/> > Tr(I(g (20)
geG

which span a subspace of C[G].

III. G CLUSTER STATE

The family of cluster states based on finite groups was
introduced by Brell in Ref. 55. Brell set out to generalize
cluster states to a group-valued Hilbert space, analogous
to the relationship between the toric code and Kitaev’s
quantum double. However, the cluster states presented
an additional hurdle not present in the toric code: sta-
bilizers which mixed X and Z operators. To use the
language of quantum error correction, the toric code is a
CSS stabilizer code %., and the ZX Z cluster state is not.

The difficulty of working with mixed stabilizers arises
from the fact that there is no natural isomorphism be-
tween group elements and irreducible representations of
a non-abelian group. The qubit cluster state is stabilized
by ZXZ operators. These would naively generalize to
stabilizers like Z}:?QZF, but it is not obvious which g
should be paired with which I' in a given term. For Z,,
for example, the natural pairing between the computa-
tional and dual basis is |0) <> |[4+) and |1) <> |—). When
G is non-abelian, however, there is no natural pairing, in
part because there are more group elements than irreps.

Brell circumvented this issue by introducing the CSS
cluster state (see Fig. 1), which can be generalized from
qubits to group-valued Hilbert spaces. The CSS cluster
state is generated by acting on the 1d cluster state with a
Hadamard gate on the even sites. The CSS cluster state
has new stabilizers, which are also obtained through the
action of the Hadamard gate. The stabilizers beginning
on odd sites are transformed from ZX Z to ZZZ, and the
stabilizers beginning on even sites from ZXZ to XX X.
Since the stabilizers now consist of only a single type of
Pauli operator, the new state is a CSS stabilizer state.

The CSS cluster state can also be prepared by act-
ing with a circuit of C'X gates on the product state
|[+) |0} |[4) - - -. This method of state preparation gener-
alizes to the finite-group case. Noticing that, for G = Zo,

3 Zs is abelian and therefore only has one dimensional irreps, mak-
ing the use of indices a8 unnecessary in this case.
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O
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FIG. 1. The relationship between the various cluster states
discussed in [55]. Each state is listed along with the structure
of its stabilizers. The G cluster state |C) corresponds to a
particular choice of directed entangler graph.

I'; is the trivial irrep and 0 is the identity element, we im-
mediately find that the product state used in the prepara-
tion of the G cluster state should be |1) |e) [1) - -, where
e € G is the identity and 1 € Rep(G) is the trivial irrep.

While a simple graph is sufficient to specify a typical
qubit-based cluster state, the graph necessary to specify
a G cluster state must be bipartite and directed [55].
There is additional information which must be included
to specify a G cluster state in higher dimensions, but
we will forgo that discussion since we are working in one
dimension.

The graph must be bipartite for the G cluster state —
and even the qubit CSS cluster state — because C X and
its generalizations — C?, and C? — are not symmetric
with respect to control and target sites, unlike CZ. With
a bipartite graph, it is possible to assign one subset to
be the control qudits and the other the targets, removing
this ambiguity.

The graph must be directed because there are two dif-
ferent group-based C'X operators

CX @D |gi) g5 = gi, 9i9i) »

and the arrow on each edge can be used to specify

whether C’X} or C’y should be applied. For the same
reason, the Kitaev quantum double is also defined on a
directed graph [112]. Though there is a unique 1d qubit
CSS cluster state, there are many possible 1d G cluster
states because of the choice of the orientation of each
edge.

The model which we study in this work is a particular
group-based cluster state specified by a simple choice of
graph — odd-site controls and even-sites targets, with all
edges oriented to the left — which we call the G cluster

(21)

state. It is defined on an open 1d chain with n sites, each
of which has local Hilbert space C[G]. The G cluster
state is given by [55]:

CY =N D lg)lgrd)lge) - lgn—1gn)lgn),  (22)
{gi}eG

where here and hereafter A is a normalization factor
which ensures that states have unit norm.

In the case G = Zs, the above state reduces to the
CSS cluster state as expected. Appendix A overviews
the main results applied specifically to the CSS cluster
state, which we generalize to the G cluster state in the
following sections.

Notice that the G cluster state |C) can be prepared
from the product state |ig) := [1)]e)|1)--- in finite
depth by the circuit

Ue = [] cX0DeX -1, (23)

i odd

In Sec. VII, we will study the family of SPT states ob-
tained by repeatedly applying Uc to |1)g).

A. MPS Representation

There exists an MPS representation for the G cluster
state. By regrouping indices of the PEPS tensors given
in Ref. 55, we arrive at the following MPS tensors:

& e, L =3 X, .

geG geG
(24)

which we place on odd and even sites, respectively. The
state |C) on an open chain can then be written as

IC) = . (25)

The above tensors are closely related to other objects
in physics and math. When G = Z, the tensors Eq. (24)
are exactly the “three-legged spiders” that appear in ZX-
calculus (see e.g. [139]). When G is a finite group, the odd
and even tensors enact comultiplication (¢ — ¢ ® ¢g) and
multiplication (g ® h — hg), respectively (see e.g. [140]).

Here, we catalog tensor network identities for the
group-based Pauli operators which we will use exten-
sively through the rest of the paper:

= (26a)
Xife%,]

= (26D)
Ko,

X, = (26¢)

O
B



= (26d)
>
- - 26
Zr Zr
(26¢)

—B— -
5

B. Stabilizer Hamiltonian and Symmetries

T

We can construct a Hamiltonian with ground states
IC) as a sum of commuting stabilizers:

1 i i i
He = —10 3 ( > w202 20 ar
i odd \T'€Rep(G)

I Z yéiﬂ)X?giw)?yH)) 7
geG
(27)

where the sum over I' € Rep(G) denotes a sum over the
simple objects of Rep(G), namely the irreps T" of G. We
call this a (generalized) stabilizer Hamiltonian because
the group-based Pauli terms all commute with one an-
other, and the ground state space is the joint eigenspace
of all operators with maximum eigenvalue. For the X-
type terms, this maximum eigenvalue is 1/|G/|, and for
the Z-type terms, it is d%/|G|. We choose to normalize
to these values rather than to 1 because the Hamiltonian
also becomes a commuting projector Hamiltonian when
written with this normalization.

The Hamiltonian Eq. (27) has four independent fam-
ilies of global symmetries, all of which are respected by
the ground state |C). There are two G symmetries, given
by tensor products of X-type operators, a Rep(G) sym-
metry comprised of Z-type operators which acts as an
MPO, and an Inn(G) symmetry:

Gr: Ig = H Ygi), (28a)
i odd
Gu: A, = [ XOX G, (28D)
i odd
Rep(G) : Br :=Tr H Zlg) ) (28¢)
(@) : Gy = [T [ X a X0 |
i even g’
(28d)

MPS MPO
= g;c lgXgl @ |g) = %ZGJI @ |gh)(h|

> X, 09 = ¥ 1@ [hg)hl

geG heG

Q;G 9" Xg" | ® |g) = g;GF(g) ® |g)gl

C e

TABLE II. Summary of matrix product state and operator
tensors used throughout this work.

where Inn(G) is the inner automorphism group of G.
Inn(G) = G/Z(G), where Z(G) is the center of G, the
subgroup of elements in G which commute with every
other element of G.

For abelian groups, the two G symmetries collapse to
one, and the Inn(G) symmetry becomes trivial, yielding
only two symmetries, G x Rep(G), that protect the SPT.
Accordingly, we have determined analytically and numer-
ically that Gr X Rep(G) is the minimal subgroup which
protects the SPT in the non-abelian case as well, so we
focus on these symmetries for the remainder of the text.
We discuss the additional symmetries in Appendix B and
reserve a full discussion of alternative avenues to protec-
tion to future work. .

Notice that A, and Br commute with one another,

%
as they are supported on different sublattices. The A
operators form a representation of the group G, as
s
AgAp = Ag. (29)

Diagrammatically, Br can be written

EF:....

When we act on an open chain, we will instead use the
open form of the symmetry operator:

épa,a::lH A :.... (30)
B

1 even
The Z-type operators do not generically multiply ac-
cording to the rules of a group. As derived in Appendix
D, the B operators multiply according to the rules of the
fusion category Rep(G), the category of representations
of G:

Br,Br, = > Ni'p Br,, (31)
k

where the NJ ‘p, encode the fusion rules of Rep(G). We

say that the B operators realize a fusion category sym-
metry [58, 60]. Such symmetries have also occasionally
been called algebraic symmetries in the literature.



Fusion category symmetries are also sometimes called
non-invertible symmetries [141, 142], especially in the
high energy context. This applies to our symmetry in
that Zr does not in general have an inverse. This is a
consequence of the fact that for each simple object I' in
a fusion category, there must exist a dual simple object
I such that I x T' = 1+ ---. That is, each object must
have a dual which fuses with it to yield the trivial object,
but this need not be the only fusion channel.

In the case of abelian G, the algebraic structure in
Eq. (31) reduces to a group structure because Rep(G) =
G when G is abelian. This is to say that the character
group is isomorphic to the group when G is abelian. We
will focus on the case where GG is non-abelian, so the Z-
type symmetry is not group-like.

C. On G x Rep(G)

Together, the A and B operators realize a G X Rep(G)
fusion category symmetry. Simple objects in this cate-
gory can be labeled by the pair (g,I') and satisfy the
fusion rules

(ga L) @ (h, Fj) = @ Ngik;Fj (gh, L) - (32)
k

N

Accordingly, the symmetry operators ng multiply as

(ZgBFi) (ZhBF;) = ZNlrik,rj
k

N

gnBr, . (33)

The symmetry category is a direct product of G and
Rep(G) because the operators realizing the G and
Rep(G) symmetries commute and therefore act entirely
independently.

Interestingly, G X Rep(G) has non-commutative fusion
operation X, as gh # hg in general. This is not to be
confused with the statement that fusion rules are said to
be non-abelian when NlEf,Fj is nonzero for multiple T',
given fixed I'; and I';. The latter comes from the fact
that the fusion rules of quantum double anyons derived
from non-abelian groups satisfy such a condition. How-
ever, the fusion operation of non-abelian anyons is still
commutative in the sense that a x b = b x a for two
non-abelian anyons a and b. Indeed, it is not possible to
construct a physical theory of anyons based on the fusion
rules given in Eq. (32). This is because commutativity
of the fusion operation x is necessary for the braiding
operation to be well-defined [50].

The fact that the fusion operation of G x Rep(QG)
is non-commutative also implies that it is not the fu-
sion algebra of the irreps of any finite group: G X
Rep(G) # Rep(G’) for any G'. This is because the fu-
sion of irreps of any finite group is always commutative
— though, of course, not always abelian in the single-
fusion-channel sense. However, every non-anomalous fu-
sion category is isomorphic to the representation category

of some semisimple Hopf algebra [31]. This implies that
there exists some semisimple Hopf algebra H such that
G xRep(G) = Rep(H). If one were to construct commut-
ing projector Hamiltonians for phases with G x Rep(G)
symmetry following the prescription of [85], this is the
Hopf algebra one would use.

IV. DISTINCTNESS FROM THE SYMMETRIC
PRODUCT STATE

In this section, we will first discuss what it means for a
state to be protected by a fusion category symmetry and
understand what notion of triviality and non-triviality
exists for such states. We will then construct a Kramers-
Wannier duality which maps the G x Rep(G)-symmetric
phases in which we are interested to G x G spontaneous
symmetry breaking phases which can be more easily un-
derstood. This duality allows us to conclude that the G
cluster state is non-trivial, in that it is not adiabatically
connected to the symmetric G x Rep(G) product state
via any symmetric path of Hamiltonians, and that this
order is robust to weak symmetric local perturbations.

A. Definition of SPT with fusion-category
symmetry

Given a fusion category A, we define an A-SPT state as
the unique ground state of a gapped Hamiltonian which
respects the symmetry A under periodic boundary condi-
tions. T'wo A-symmetric states belong to distinct phases
if they cannot be deformed into one another by a finite
time evolution of a symmetric local Hamiltonian [58].
[o) == |1,e,1,e,...) is a product state that respects
the G x Rep(G) symmetry, so we can use it as a repre-
sentative symmetric product state. Since the state |C) is
also a G x Rep(G)-symmetric state, our goal is to show
that it belongs to a distinct phase from the product state
|10).

It is important to emphasize here and throughout the
paper that we will be intentionally using the phrase (sym-
metric) product state in lieu of the trivial SPT state. To
clarify our nomenclature, there are two possible defini-
tions one can use to define a trivial SPT phase

1. It is the identity element of the group of SPT phases
with stacking as a group operation

2. It is the phase to which the symmetric product
state belongs

In the case of invertible symmetries, these two defini-
tions are equivalent. However, SPTs protected by non-
invertible symmetries cannot be stacked, and therefore
only form a set rather than a group. To see this, it is
helpful to review how to stack SPT phases when the sym-
metry is unitary. Consider two Hilbert spaces H; and Ha
each hosting a G-symmetric SPT phase |¢1) and |¢3), re-
spectively. To stack the two phases, we may consider the



tensor product state |t1) ® |19) in Hq ® Ha and restrict
the full symmetry G x G to the diagonal subgroup G
which acts on both copies at the same time. Then, given
a choice of a local symmetry action, the trivial SPT phase
then contains all wavefunctions |1g) such that |¢) & |1)o)
is in the same phase as |¢)) as G-symmetric phases. In
contrast, a general fusion-category symmetry A x A may
not contain A as a diagonal subcategory. Thus there is
generally no notion of stacking, and therefore the trivial
SPT phase in the first sense cannot be defined.

On the other hand, having chosen a tensor product
Hilbert space and a representation for the symmetry, the
symmetric product state lives in one and only one of these
SPT phases. To conclude, there is a “special” SPT phase
containing the symmetric product state. Thus, the triv-
ial SPT phase in the second sense can be defined if a
decomposition of the Hilbert space is chosen.

Relatedly, although such SPT phases can be unam-
biguously called short-range entangled phases since they
can be deformed to a product state by explicitly break-
ing the symmetry, it is ambiguous to define whether an
SPT state is invertible. In the first sense, invertibility is
not well defined due to the lack of a group structure. In

J

1
Hsspr = el > <

i odd “T'e€Rep(G)

Hgsps = 1l

i odd “T'€Rep(G)

Both of these Hamiltonians have a family of symmetries
on each sublattice:

G?{dd: H ?gi),

i odd

ayer: I X9 39)

1 even

These symmetries act independently, so the total symme-
try group is G¥d x G¥°". Symmetry is spontaneously
broken in both models. The ground-state subspaces are
given by

) g €GY,

mhm%gmmmnvzgeG}. (36)

HSSBI : {|1aga 1797 .-

Hssps - { >

{9:}€G

In SSB1, the unbroken symmetry is G%'9. In SSB2 the
unbroken symmetry for the state labeled by g is G, :=
{yﬁf)y(;hzl) che G}. In each case, the symmetry is
broken from G x G — @G, but with different unbroken
subgroups. Thus, the two families of ground states realize
distinct gapped phases under the G%4 x G symmetry.

Notice that SSBI and SSB2 are related by a controlled

multiplication from the odd sublattice to the even. In
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the second sense, it is possible the unitary can be used
to permute between different SPT phases. Since every
unitary has an inverse, these SPTs can be thought of as
invertible in the second sense if the symmetric product
state is chosen as a base point. However, if we do not
declare the symmetric product state as a special phase,
then this unitary only gives rise to a group action on the
set of SPT phases (i.e. a torsor [60]).

B. Duality argument

We construct a Kramers-Wannier duality [143] which
associates the G cluster state |C) and the G x Rep(G)-
symmetric product state [ig) to two different G x G
symmetry-breaking states. States with different patterns
of spontaneous symmetry breaking belong to different
phases, implying through the duality that |C) and [i)p)
also belong to different phases.

We begin by constructing two models which sponta-
neously break G X G symmetry:

i % i 1 i
BIECRE RS S EED ol A= oo}

geG

i odd geG
(34)

1 > > Ix [g}(i).Z(Fiﬂ),ZP(ws).Z(F“rz)} i+ ?é@)}(ngﬂ)).
geG

(

particular, let

Ussp := H C}(i’iﬂ), (37)

i odd

then we see that

Ussg|1,9,1,9,.-) = Y 191,919, 92,929, ),

{g:}eG (38)

UsssHsspi (USSB)T = Hgspo.

We now want to apply Kramers-Wannier duality to the
even sites, taking the G x G symmetry to G x Rep(G).
This duality can also be thought of as gauging the GE**
subgroup of G}}dd x GR" in the sense that the original
theory is pure matter and the KW dual theory is pure
gauge. Gauging of finite subgroups was discussed previ-
ously in Ref. 144.

It was shown in Ref. 145 (see Appendix E for a brief
review) that the KW duality can be implemented via the
cluster state MPS by flipping the physical leg of the odd-
site tensors. Using the MPS for the G cluster state, we



11

Symmetry H States
SSB1 SSB2 Phase
Ground State
{|17ga1agalvg7"'>:g€G} {Z{gi}EG |gl7glg79279297g3ag397'">:QEG} Manifold
Tr[Z].1.%r) Tv[ZL. Zr. Zr< Z1)
GxG ?()g ng }g Stabilizers
Tr[Z].1.%r] Tv[ZL. Zr. Zr< Z1)
dp t(even) (even+2k) dp t(odd) ry(even) t(even+2k) r,(odd+2k) Order
> T (21w 2 ] ST (210 gl 21 B .
k k ;
1 (odd+25) 1 (odd+25) 37 (even+25) Disorder
IGI—l‘g;8 (JI:IO?Q ) IGl-1 g;e (]1:[0?9 79 > Parameter
Product State G Cluster State (SPT) Phase
_ _ _ Unique
1,e,1,e,1,¢€,...) 2(girec 191, 9192, 92, 9293, 93, 93da, - - -) Ground State
Tr[Z]) T[Z1. Zr . Zr]
G x Rep(G) g e Stabilizers
Tr[Z]] T[ZL. Zr . Zr]
X, X, X, X,
k k—1 ;
dr t(even+2j) dr t(odd) (even+2j5) (odd+2k) String Order
F§1 \G\*lTr jl;IOZF F§1 \G\*lTr Zr ’ <jHOZF > i Parameter
k k—1 .
1 (odd+2j) 1 (even) 3£ (odd) (even+2j) 3¢ (odd+2j5) (even—+2k) Disorder
|G|—1g§£e <]_U079 > \G\—lggé:eyg ?9 <]_1:[1<)_(>g ?g ) ?g Parameter

TABLE III. A summary of the four quantum phases involved in the duality argument.

The double arrow in the ZZZ7Z

stabilizers of SSB2 reflects the fact that the operators corresponding to the third and fourth sites appear in reverse order in
the virtual space matrix product, see Eq. (34). The data associated with each phase can be derived from the data of any other
phase using the quantum circuits and dualities laid out in Fig. 2.

find:

From this diagramatic derivation, we read off the appro-

priate KW duality:

D Z@91, g0+,

X?giﬂ) . ygiq)?;iﬂ).

This is a generalized domain wall duality. Applying the

duality to each of our SSB Hamiltonians, we find

Hegpy — — Z Z Tr [Z}:(H-l)} dr + Z }g¢)7

i odd I'éRep(G)

geqG

Hsspes— Y. 3. Tr {Z}<“.Z(F’3+1>.ZS+2)] dr

i odd I'éRep(G)

I Z ygiq)zgi)y?ﬂ) — H,

geG

(40)

Notice that Hgspe maps to He under the KW duality,
while Hgsp; maps to a Hamiltonian with unique ground
state |1o) := |1,e,1,e,...), our reference G x Rep(G)-

symmetric product state.

We can use this duality to prove that the G cluster
state is not in the same phase as the symmetric product
state as follows: because Hgggi and Hsgps exhibit dif-

(39)

ferent patterns of spontaneous symmetry breaking, they

belong to different phases. We have just shown that these
Hamiltonians are mapped under the KW duality into the
product state Hamiltonian and G cluster state Hamilto-

nian, respectively. If there were a symmetric path con-



Unitaries and Dualities

SSB2

1
I Kramers-Wannier I
|

Product
g%azltlec 1% - SPT

SSB1  —{Usss

FIG. 2. A depiction of the KW duality and quantum circuits
relating the phases tabulated in Table I11. Note that the quan-
tum circuits themselves — defined in Eq. (37) and Eq. (23) —
are also related through the KW duality.

necting the G cluster state to the product state, then
pushing this path through the KW duality would give
a symmetric path connecting the two SSB states, which
contradicts the fact that they belong to distinct phases.
This implies that there does not exist a symmetric path
connecting the cluster state to the product state, so that
they must be in separate phases. We can conclude that
|C) belongs to a distinct fusion category SPT phase from
the symmetric product state.

We can further argue that the fusion category SPT
phase to which the G belongs is robust to weak sym-
metric local perturbations. Consider such a perturbation
dHgxRep(q), Where the subscript denotes the symmetry
respected by the perturbation. Beginning with He, the
perturbed Hamiltonian becomes

Hé = H¢ + 6HG><Rep(G)~ (41)

We want to know whether H/, describes the same phase
as He, for any choice of 0 Hg xrep(a), Which is equivalent
to saying that the perturbation doesn’t close the gap.
Because local symmetric operators are mapped to local
symmetric operators through the KW duality [143], we
can map H/, to

Hysp; = Hsspi + 0Haxa, (42)

where Hgxg is a local G x G-symmetric perturbation.
We know that the SSB order of Hgggy is robust to local
symmetric perturbations, so we can conclude that the
ground states of Hggpy and HéSBl lie in the same phase.
From this we know that the ground states of the Hamil-
tonians they map into under the KW duality — namely
H¢ and H/, - lie in the same phase. This means that the
SPT order in |C) is robust; in particular, its ground state
degeneracy — to be discussed in the following section — is
robust to local symmetric perturbations. We verify ro-
bustness of ground-state degeneracy numerically for the
simplest non-abelian case in Sec. VI A.
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V. SIGNATURES OF SPT ORDER

In this section, we discuss how characteristic signatures
of SPT order generalize to the context of fusion category
symmetry. For a review of the qubit results which are
generalized here, see Appendix A.

A. Edge Modes and Ground State Degeneracy

1d SPTs on open chains with on-site group symme-
try action support edge modes that are robust to local
symmetric perturbations. These edge modes are respon-
sible for the ground state degeneracy of these phases. In
the bosonic case, the edge modes transform as a projec-
tive representation of the global symmetry G and can be
identified with elements of the second cohomology group
H2(G,U(1)) [52, 114, 120], which in turn provides a clas-
sification of 1d bosonic G-SPTs.

We can detect the presence of edge modes by acting

on the state |C) with the global symmetries A, and Br.
We find that the action of the global symmetries pulls
through to the virtual level and reduces to operators act-
ing only on the edge Hilbert spaces Hy and Hpg:

4,00 = * * * *
O O
Braﬁ |C> _ ‘ Zr ‘ ‘ Zn ‘
O O
Zr o z1.

where »— = (1| € H} and —= = |[¢g) € Hp. From this

diagrammatic derivation, we can read off the edge modes:
L R

G:XOX® Rep(@) : 21 2l )Lﬁ, (43)

which act on Hy ® Hr. We have written ?E,L) rather

than yéL)T because (¥y | yéL)T — YE,L) [r). Tt is also
possible to derive the existence of edge modes without
knowing the form of the ground state, using only the
stabilizer Hamiltonian Eq. (27) (see Appendix F).

Notice that the edge modes acting on each edge do not
commute with one another:

X (2.2

X0 221"

X,
X,

(44)

= 2" .1(9). 2]

e} e}

— |2"r(g).21"]

[e3% [e3%



In the qubit case, the edge modes fail to commute up to
a phase of £1, reflecting the fact that the edge modes
generate the Pauli matrices, a projective representation
of Zo x Zo. Here, we find that the edge modes for group-
valued qudits fail to commute up to a matriz I'(g) or
I'(g). However, the total edge operators — the product of
the left and right operators — still commute,

ygmygm [Z#).z}(ﬂ .= [Z(FL)-ZP(R)Lﬁ yémj}ém ’

«

(45)
because the extra factors of I'(g) and I'(g) meet between
the Z operators and multiply to the identity.

These edge modes are also manifest in the wavefunc-
tions of the ground states. On an open chain, the ground
state manifold is spanned by |G|? basis states given by

lg1) NZ Z l9192)|g2) -

gN-1

“lgn—19n) | lgn), (46)

for g1,gn € G. We can denote the state in Eq. (46) by

91 7, 9n5 ") Notice that these states, expressed as matrix
() gy, Notice that these stat d tri

product states, exhibit the same bulk structure subject

to different boundary conditions.

Let us show that the symmetry action of A and Bpaﬁ
on the edge modes given in Eq. (43) can map between
all basis states. This can be seen by performing a basis

transformation by the unitary C’X(QR)

XX X0, 200217

, which maps

T(R)
— {Z } .
aB T lap

(47)

In this new basis, we may start with the basis state
le(P) 1(R)) = dec le(F) gt Then by acting with
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each symmetry, we find

— A
AyBr,, e, 100) = [ 7Dy (48)

Since g%, FSZ)> forms an orthonormal basis for C[G] ®
C[G], we have |G|? ground states.

B. String Order Parameters

A large class of SPTs admit a non-local or string order
parameter which can effectively detect SPT order [121-
125] (see Ref. [146] for an exception). We can derive
two families of string order parameters for the G cluster
state by mapping the order and disorder parameters in
SSB2 through the KW duality. Because these parameters
distinguish SSB1 from SSB2 on one side of the duality,
we expect that they will be able to distinguish |¢g) from
|C) on the other side.

The Z-type string order parameter can be derived by
mapping the order parameter from SSB2 It consists of a
string of Zp on even sites, with a Z and Zr on the odd
sites preceding and followmg the strlng, respectively:

k—1
S(z k) Z - 1 Ztr(i)_ Hzlg+1+2j) _Z¥+2k)
41 | | o =0

(49)
where the superscript indexes the left endpoint ¢ and the
length 2k+1 of the string operator. Notice also that S(Zl’k)
is Hermitian, so that its expectation value will always be
real.

Diagrammatically, 32(77 ) acts on the G cluster state as

as Y d& = |G| so that dors1 d% = |G| — 1. We can then

conclude that (C|Sz|C) = 1, as expected for a (string)
order parameter.

We will now show that the expectation value of S’,Ez’ )
in the G x Rep(G)-symmetric product state |¢g) is zero,
so that S(Zi’k) can be used to detect the SPT order in
IC). First, recall that the summation of the trace of a
Z operator over all irreps projects the argument to the
identity element (see Eq. (14)). We can use this to relate

=X =c), (50)
[
S’Z(zi’k) to the delta function on G:
sik) |Gl @ 1
Sz |G’| -1 e,gi(l_[f;(} gi+1+2j)gi+2k |G’| -1 (51)

It directly follows that indeed (| Sz |1ho) = 0, the de-
tails of which can be found in Appendix G.

The X-type string order parameter can be derived by
mapping the disorder parameter from SSB2 through the

KW duality. It consists of a string of on odd sites
and X, on even sites, with an ? and y g on the

sites preceding and followmg the strlng, rebpectively:



k) 1 i i

g#e

where the superscript indexes the left endpoint ¢ and the

length 2k + 1 of the string operator. Note that S;k)
begins on an even site.

Because |C) is a +1 eigenstate of each term in the sum-
mand and there are |G| —1 terms, we have (C|Sx |C) = 1.
Furthermore, it is straightforward to see that each term
in the summand has expectation value zero in |1g) be-

cause factors of (e|g) = 0<, appear and the sum is over
g # e. This allows us to conclude that ()] S;’k) [o) =

0, so that Sg;k) can also be used to detect the SPT order
in |C).

C. Topological Response

Topologically ordered and SPT states are known to
pump quantized symmetry charge in response to the in-
sertion of symmetry flux. This is known as charge-flux
attachment [127] or topological response [128]. The most
well known example of topological response is the quan-
tum Hall effect, in which U(1) symmetry flux in the form
of magnetic flux induces an accumulation of U(1) sym-
metry charge in the form of electric charge [126]. The
quantized response in that case is the Hall conductivity.
Topological response is an important signature which can
distinguish SPT order from trivial order, the latter host-
ing no quantized response.

In the case of Abelian G, the response can be under-
stood from the perspective of the decorated domain wall
construction of the cluster state [147]. The wave function
of the Zs x Z5 cluster state can be understood as charges
of the first Zs decorated on the domain walls of the sec-
ond Zsy. Threading a Zs flux creates a single domain wall
from which we can detect the charge of the other Z, (see
Appendix A 6 for further details). We will now see how
this generalizes in the case of the G cluster state.

In order to define flux insertion for a 1d SPT, we place
the state on a ring with periodic boundary conditions.
Threading flux through a state on a ring is equivalent
to twisting the boundary condition [129]. Threading a
g-flux through |C) has the effect of inserting a g domain
wall between the first and last sites:

ICq) =N Z l91)19192)|g2) - -+

g:€G

lgN—19G1), (53)

where |C4) is the G cluster state on a ring with ¢ flux
inserted. Diagrammatically, this corresponds to inserting
an X-type operator on the virtual space:

5 L%

(54)

k-1
H?gi+2j)?gi+1+2j) };iﬂk)’
j=1
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(52)

(

We now want to show that the system responds to the in-
sertion of G flux by pumping a nontrivial Rep(G) charge.
The charge of |C) under Br is 1 because |C) is Rep(G)-
symmetric. If we act with Br on |Cy) and find an eigen-
value other than 1, then we say that |C,) is nontrivially
charged under the Rep(G) symmetry. Indeed, we find

| I 20

i even

Brlc,)

ICq) = Tr[[(9)]ICq)-  (55)

We see that the insertion of g-flux induces a response
given by the character of g: Tr[I'(g)]. This also implies
the response only depends on the conjugacy class of g,
since characters are invariant on conjugacy classes. It is
also interesting to note that |C4) is an eigenstate of Br,
i.e. it transforms as a 1-dimensional irrep of Rep(G). In
general, states which are charged under a symmetry G
will transform as some irrep of GG. In this case, the irreps
of Rep(G) are group elements due to Pontryagin duality:
Rep(Rep(G)) = G. Each of these irreps is 1-dimensional,
so |Cy) must be an eigenstate of Br.

We can similarly thread a I'qg-flux through |C) be-
tween the first and last sites, yielding

ICr.,) =N Z

9:€G

(91)]aslg)9192)|92) - - - lgn—191)-

(56)
Diagrammatically, this corresponds to inserting a Z-type

operator in the virtual space:
- 4—% . (57)

ICr) =

0

We would like to understand how the state responds to

the insertion of I'ys flux, so we act on it with Aq7 the
representation of the G symmetry. We see that |Cr,,) is
transformed under this family of global X-type symme-

tries:
Q|CFQ[§ NZ (919)]aplgr)|g192)|g2) -+ [gn—-191)
gi€G
S
Thus, [Cr,,) is not necessarily an eigenstate of the G

symmetry. Instead, we have a subspace supporting states
(_
{A,lcr..) geG}. (59)

This is sufficient to conclude that there is a nontrivial
topological G response to the insertion of Rep(G) flux.



The product state |1)g) is unaffected by the insertion of
symmetry flux. This can be understood as arising from
the fact that |0) is a product state, with only single-site
terms in its stabilizer Hamiltonian. Because there aren’t
any terms which span two sites, there are no terms to
modify through flux insertion between the sites. Clearly,
then, the product state does not have any charge response
to the insertion of symmetry flux. This is yet another sig-
nature which distinguishes the state |C) from the product
state.

It was argued in [56] that charge and flux excitations
in the quantum double bulk also yield twisted bound-
ary conditions in the effective edge theory. Thus we can
equivalently think of the probe in the above topological
response as flux through the SPT on a ring, or as anyonic
excitations in the bilayer quantum double which hosts |C)
as a gapped edge.

VI. DIHEDRAL EXAMPLE: G = D3

We now turn to an example to illustrate the points
of the previous section in a more concrete setting. We
choose G = D3 = Z3 X Zo, as this is the smallest non-
abelian group. It can be thought of as the symmetry
group of an equilateral triangle, which consists of ro-
tations by multiples of 27/3 (R € Z3) and reflections
(S € Zy). Tt is a semidirect product, rather than a di-
rect product, because the rotations and reflections do not
commute. The group multiplication table is given by:

Di;| e R R S SR SR?

e e R R? S SR SR? R

R| R R e SR* S SR AN
R2|R2 ¢ R SR SR? S A
S| S SR SR? ¢ R R?

SR|SR SR? S R* e R S 5 7
SR?2|SR?2 S SR R R? e

There are three irreducible representations of Ds: the
trivial irrep 1, the sign irrep I'y, and the 2d irrep I'y4.
They are given by:

d

10

e |1 1 <01)

_1 _ V3

R |1 1 é_i

2 2

) _1 V3

R4 |1 1 ,&,21

2 2

1 _ V3

S |1 -1 _QQ _i

2 2

—-10

se|1a ()
SR?|1
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We can also consider the tensor product of irreps,
which decomposes into direct sums of irreps according
to the rules of Rep(Ds):

& ‘ 1 Ty Toy
1|1 I r
Rep(Ds) : r,|T, 1 sz

Tog|Toq I'og 1@T BTy

Notice that 1 and I'y have inverses in the conventional
sense, while I'sq does not. This means that Zr,, does
not have an inverse, so that the Rep(D3) symmetry is
non-invertible. Namely,

Tr[ZFm]Tr[ZFQd] = Tr[Zl} + Tr[ZFs] + Tr[ZFQd] # 1.
(60)
To see this explicitly, consider the Tr[Zr,,] operator act-
ing on a single site:

2 0 0 000
0-1 0 000
00 —-1000
TT[ZFM] = 00 0 000 (61)
00 0 00O
00 0 00O

Clearly this matrix has determinant zero and is therefore
not invertible.

A. Ground State Degeneracy

With this concrete model in hand, we explored several
of the features discussed above numerically by construct-
ing the Hamiltonian Eq. (27) and finding ground states
using DMRG in ITensor [148]. We found |D3|?* = 36
ground states, consistent with the presence of a group-
valued qudit at each edge.

We then tested the stability of the phase under ran-
dom symmetric single-site perturbations. We formed the
odd sublattice perturbations by first selecting a random
Hermitian matrix Oyqq then symmetrizing it under Ds:

o= f?_qooddXL. (62)

9g€Ds

Symmetrizing an operator with respect to an MPO sym-
metry is more subtle, but one can derive using category
theoretic methods that the most general single-site op-
erator preserving Rep(G) symmetry is a random real di-
agonal matrix [149]. We selected such a matrix O%2
as our even sublattice perturbation and considered the

Hamiltonian

He=He—a ) O —a 37 000,
7 odd

(63)

7 even

where « is the strength of the perturbation. For a sym-
metric perturbation with fixed small o, we expect that
the ground state degeneracy is split by A ~ e~ for finite
system size N. In the thermodynamic limit A — 0 and
the degeneracy is restored. This is illustrated in Fig. 3.



Energy Spectrum, N =8

Energy Spectrum, N = 20
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FIG. 3. Perturbed H/. We have numerically calculated the spectrum of H/ on open chains of even sizes between N = 8 and
N = 20, with the spectrum for the smallest and largest chains plotted. We have set o = 4 - 1072, The inset of the rightmost
plot shows the same data on a log-linear scale with line of best fit in order to more obviously illustrate the exponential decay.

B. Entanglement Spectrum Degeneracy

We have also studied numerically the entanglement
spectrum. Entanglement spectrum degeneracy is another
signature of SPT order which arises from the projective
action of the symmetry at the edge [150, 151]. For a bi-
partitioned state |ap) € Ha ® Hp, the entanglement
spectrum is defined as the eigenspectrum of the reduced
density matrix pq = TI‘B[|¢AB><¢AB”-

We can identify the subsystems A and B with the left
and right halves of an infinite chain. In order to calculate
the entanglement spectrum of the chain, we would trace
out one half of the chain, introducing a boundary of the
remaining half-infinite chain where the two halves met.
Because SPT states support unpinned degrees of freedom
at their boundaries, we expect degeneracy in the energy
spectrum of the remaining half-infinite chain, and there-
fore in the entanglement spectrum.

Numerically, we of course only have access to chains of
finite length. However, we can think of the tensors deep
in the bulk of a long-but-finite chain as approximating
the tensors of an infinite chain, with the approximation
converging as a function of system size. Accordingly, we
can use a tensor deep in the bulk to calculate the en-
tanglement spectrum degeneracy of the finite chain, the
results of which are plotted in Fig. 4. In particular, we
plot the normalized splitting between the largest eigen-
value \; and sixth largest eigenvalue Ag in the entangle-
ment spectrum of the ground state of the perturbed H{
on open chains of various lengths. We find that this split-
ting tends to zero in the thermodynamic limit, indicative
of a sixfold entanglement spectrum degeneracy. This is
consistent with the physical picture of an unpinned Ds-
qudit hosted at the edge.

VII. REPEATED ACTION OF U¢

By repeatedly applying the state preparation unitary
to |1o), we can define a family of SPT states |C") :=
(Uc)™ |tho) with the same symmetry and different projec-

Entanglement Spectrum Degeneracy

T T =
1 —8—a=23-10"2 []

—H—a=4-10"2

—B—a=5-10"2

FIG. 4. Numerical results for the normalized splitting be-
tween the largest eigenvalue A1 and sixth largest eigenvalue g
in the entanglement spectrum of the ground state of Eq. (63)
on open chains of various lengths N, and as a function of the
strength of symmetric noise a.

tive actions. We find

C") = N> lg1) [(90)™ (92)™) [g2) -+~ [(gn—1)"(98)") lgw) -
{g:}
(64)
The MPS tensors for this state are given by

Lo —Xleels, L =YX, el

(65)
on odd and even sites respectively. The even sites are the
same as those of |C) and are denoted the same. The odd
sites differ, so we introduce the above numbered tensor.
This tensor satisfies




gl g

This state is still Gg x Rep(G

metry operators A, and Br. We can repeat the analysis
of Sec. V A to determine the edge modes of this new state:

)-symmetric, with sym-

A,lem = * * * *
@ O n B n O n
Br,, [C") = -
n O n e n

From this diagrammatic derivation, we can read off the
edge modes

G : y;??;{?), Rep(G) : [Z(FL).Z;(R)] 5 (66)

[e3%

which satisfy the commutation relations
L L R L n R
X0 20 ]! >L5 = [2{ r(gm 217

X 221" L= 2 r(gm) 21"

(03

g,

ot

(67)

af

apB

Let n, be the exponent of the group, defined to be the
least common multiple of the order of each element in
the group. This implies that ¢"* = e for all g € G, and
ny is the smallest integer for which this is true. When
n = n,, we have

|Cn*>:‘176717~--517€71>:|¢0>' (68)

This shows that applying Ue to [1g) m,. times returns
|tho). This can also be seen in the fact that the edge mode
algebra Eq. (67) trivializes — that is, the edge operators
all commute — when n = n,. We can therefore create a
family of n, SPT states with symmetry Gg x Rep(G) by
repeatedly applying Ue. In the case of Abelian G, these
states give rise to distinct SPT phases. We leave the
question of if and when these SPT states are all distinct
to future work.

VIII. UTILITY FOR MEASUREMENT-BASED

QUANTUM COMPUTATION

Measurement-based quantum computation (MBQC) is
an alternative paradigm for quantum computing which
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enacts unitary gates through measurement. Unlike tra-
ditional methods of quantum computation, MBQC be-
gins with a highly entangled resource state, rather than
generating entanglement during the computation. The
choice of measurement basis enables the quantum pro-
grammer to implement particular unitary gates (often
up to probabilistic byproducts) and is in general condi-
tioned on outcomes of earlier measurements. Recently,
it has also been shown that MBQC can be formulated in
terms of a gauge theory [152].

Cluster states were the first states used for MBQC, and
they remain the paradigmatic resource state [54, 132
134]. Later works have shown that the computational
power of cluster states is intimately related to their SPT
order, such that entire SPT phases are equivalent re-
source states for MBQC [93, 135, 137, 153, 154]. This
observation has given rise to the notion of computational
phases of matter, significantly expanding the conception
of what can be an MBQC resource state. Because of the
correspondence between SPT order and MBQC univer-
sality, we expect that the G cluster state should be useful
as an MBQC resource state.

In this section, we will present an algorithm for MBQC
on G cluster states based on abelian groups and non-
abelian groups which are semidirect products of abelian
groups, as well as lay out the idea to perform MBQC
when G is a solvable group: a group formed via exten-
sions of abelian groups. The abelian case is relatively
straightforward, and we will show that the more complex
cases can be understood as several parallel instances of
the abelian case.

A. MBQC with MPS

The language of matrix product states naturally pro-
vides an elegant implementation of MBQC in 1d [130,
131]. This is called the correlation or virtual space pic-
ture of MBQC. In this picture, the logical qudit is the
state in the virtual space encoding the boundary condi-
tion on the right end of the chain, and the computation
takes place in the virtual space.

Consider an MPS

) =Y (or] ALY -+
{9i}

AP o) g1, gn)s (69)

where |vg) is the right boundary condition and logical
qudit. If we measure the physical qudit at site n and
obtain the outcome |s), we find that the new state is

B 1) 4(n
0) <5 S (o] AD - APTD A ug) g1, .., gnt) |s)

{9:}
(70)

where A7 =3 (s|gn) AS(,Z). We can think of the n — 1
qudits which we have not yet measured as an MPS

9 = > (orl AR - AT W) (g1, guma)s (T1)
{g9:}



where |vf) : =AM [vg).
We see that this measurement effectively acts on the

virtual state |vg) with the operator Ag"), yielding the
state |v};) = A |vg). The evolution from |vg) to |v})
is one step of computation within the MBQC paradigm,
akin to one layer of a quantum circuit. An MPS is said
to be wuniversal if this evolution can be used to apply
any SU(x) gate, where x is the dimension of the virtual

space.

B. G cluster state as an MBQC Resource State

Recall the explicit form of the MPS tensors for the G

cluster state:
& =X laddlele). L = S X, @lg).
(72)

geG geqG
If we measure this state in the irrep matrix element basis
on odd sites and group basis on even sites, we find the
action on the virtual Hilbert space to be

|Fa/i>

0dd: |vr) =% [Zr],4|vR)

(73)
Even: |ug) 19, Yg lvr),

where |[T'y5) and |g) are the measurement outcomes. Di-
agrammatically, we can write this as

This poses a complication: the Z-type Pauli errors are
not in general unitary, and the X-type Pauli errors do
not in general commute. This renders the straightfor-
ward generalization of the abelian protocol intractable.
However, we find that the G cluster state is still uni-
versal for MBQC for a wide class of non-abelian groups,
though some additional modifications from the abelian
case must be made.

1. Warm-Up: G Abelian

We first show that the G cluster state is universal when
the group is abelian. Here, we generalize the construction
in Ref. 155 for performing MBQC with the qudit cluster
state. We translate the protocol to the correlation space
picture of MBQC and generalized from qudits (G = Z,)
to arbitrary abelian G.

Implementing Gates Virtually. The universal sin-
gle group-valued qudit gate set which we want to imple-
ment virtually is

Re = {R_gi)(e), RE0):geG T e Rep(G)} . (75)
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where 6 € U(1) is a rotation angle. The rotation opera-
tors are given by

X 10(§ +§g) g ;é g, +
R0 = 0T g2,
H9=49 (76)
. eie(ZrJrZ}), I" complex, +
RP(9) = e=0(Zr=21) T complex, — -

e¥Zr T real

We prove in Appendix H2 that this gate set is indeed
universal for a single group-valued qudit.

We will now explain how to implement any gate in Rg
on the virtual level by measuring the G cluster state in
appropriately rotated bases. Essential to this protocol is
the fact that we can implement these gates on the virtual
level by applying an appropriate unitary to the physical
legs. In particular, we find that

<_
where R _E,i) is defined as in Eq. (76) but with right mul-
tiplication instead of left. These relations follow straight-
forwardly from Eq. (26a).
To implement the gate ﬁgi)(e) on the virtual
level, we can measure an even site in the basis

{ngi”(a) hy:heGl:

h

Similarly, to implement the gate R )(9) on the vir-
tual level, we can measure an odd blte in the basis?

{R;i”(ﬁ) ITz) :x e G}:

Iy
ol P
R

4 Because the group is abelian, the set of irreducible representa-
tions form a group isomorphic to the original group and can thus
be labeled by the group elements. This is the reasoning for the
irrep notation I'y: T'; is the irrep that is associated with z € G
through the Fourier transform.




Recalling that measuring the even and odd MPS tensors
has the following action:

7 e g

we see that the total effect of the rotated measurement
on the boundary state is

g(i)f®R(i>T‘h7Fz>
|’UR> g T Yhﬁ(gi)ZFzR%i) |UR> . (81)
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We are therefore able to deterministically implement the
entire gate set Rg up to group-based Pauli byproducts
which are dependent on the measurement outcomes.

Adaptive Measurements. Notice that Pauli by-
products lie between the logical gates in Eq. (81). We
would prefer for all logical gates to be to the right, act-
ing on the logical qudit, with Pauli by-products to the
left. We can ensure this form by adapting later measure-
ment bases to compensate for earlier Pauli errors.

Consider an example with three sites which illustrates
the general strategy. The first measurement is performed
on an odd site in the usual basis:

— T
In order to compensate for the Zr_ error on the virtual level, we measure in the basis { (Réi) (H)me) |h) :h e G},

which will propagate the error past the next logical operation:

T EHAPH A}

We can use the properties of the tensors to move the Zr, to the left of the next odd tensor, after which we can make

i
a measurement in the basis {(Rl(ﬂj,[)(ﬂ)}h) |h) : h e G’} which moves the X}h error to the left:

Ly

.

- ~~%ZF$LX2;LH§§*)HR(§)F' - - J7r

T

R

where we have used the group-based Pauli commutation
relation Zp, )?g = I';(9) X 4Zr, and multiplication of
abelian irreps Zr, Zr, = Zr,, . Because we have taken
G to be abelian, the factor I';(h) is a global phase which
can be discarded.

We have demonstrated the essential aspects of the
strategy, which can be employed indefinitely to perform
any number of logical operations. As desired, we see

RPN P N RP

L'z (h)

0 RN T

(

that conditioning measurement bases on the outcomes of
previous measurements allows us to propagate all Pauli
errors to the left of the logical operators.

Outcome of Computation. Once we have applied
the entire sequence of gates, we will have mapped the
edge state from |vgr) t0 |UR target), UP to a global phase
which we can disregard and a Pauli byproduct X ,Zr, ,.
¢’ and I/ will be a function of the measurement outcomes



and entirely determined by the relations Eq. (26a). To
correct this Pauli error and complete the computation,
we can use classical post-processing, or if available ex-
perimentally, act on the physical legs of the next mea-

surement site with (Z;;),T.Zfﬂoh),)(]l ® y@/), which pulls
through to thh, 7@:

(83)

= T

In summary, we have shown that the abelian G clus-
ter state is a suitable resource state for universal sin-
gle group-valued qudit MBQC. In particular, we can im-
plement each gate in the universal gate set Rg (up to
group-based Pauli byproducts) through measurements in
rotated bases. We have shown that we can use knowledge
of measurement results and classical feedback to propa-
gate byproducts to the left and apply a series of gates
sequentially. In the next section, we will show that only
small modifications are necessary to adapt this protocol
to utilize certain non-abelian G cluster states for MBQC.

2. @G a Semidirect Product of Abelian Groups

We approach non-abelian groups by considering those
which can be constructed as semidirect products of
abelian groups. Recently, a systematic construction of
topological order preparation through finite-depth local
unitaries and measurements was put forth in Ref. 86.
En route to their results, the authors present a general
formalism for implementing KW duality on a solvable
group by applying the duality to a sequence of abelian
subgroups. In this construction, unitaries encoding the
particular extension are intertwined between abelian KW
MPOs to form the non-abelian KW MPO. Groups con-
structed as semidirect products of abelian groups are a
special case of solvable groups, so we may apply these
results to the present task.

Recalling that the KW MPO is simply the cluster state
MPS with odd physical legs flipped [145], this construc-
tion in turn provides a construction of the non-abelian
G cluster state in terms of abelian cluster states and
unitaries (see Eq. (86) for a special case). We will use
this decomposition to build up MBQC with non-abelian
G cluster states from the abelian computation protocol
laid out in the preceding section.
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A particularly simple class of non-abelian groups are
those which can be constructed as a split extension of two
abelian groups. Mathematically, we say that some group
G is an eztension of a quotient group ) by a normal
subgroup N if there exists a short exact sequence

1-N—-G—-Q—1 (84)

We say that the extension is split if G is a semidirect
product of Q and N. In this case, the decomposition of
a non-abelian G-qudit into abelian N- and Q-qudits is
relatively simple, as presented in Eq. (86).

As Hilbert spaces, there exists an isomorphism C[G]
C[Q] ® C[N] which enables the decomposition

lg) — |‘Ig7ng>' (85)

However, this does not yet capture the fact that G is a
semidirect product of @ and N. This is encoded in the
action of Q on N given by a map o : Q — Aut(N) (i.e.,
09 : N — N is an automorphism). We may define a
unitary operator which implements this group action as
a controlled operator ¥ = >__ |g,0%n])}g,n|. One can
show that using this unitary, the MPS tensors can be
decomposed as [86]

= - : (86)

where the red and blue MPSs are group cluster states
corresponding to the abelian groups ) and Nm respec-
tively:

& =S adew, L =3 X0,

)

9€Q a€Q
o =2 mmlem, L =3 X.em.
nenN neN

(87)

In order to compensate for the additional 3 operator, we
will only have to slightly modify the approach we took in
the abelian case above.

Due to the decomposition C[G] = C[Q] ® C[N] we may
perform a measurement in each factor separately.

We first measure the blue odd site in the basis:

{(Rﬁ)T IT,) T, € Rep(N)} . (88)

The effect of this measurement is



We next measure the two central qudits so that we can explicitly counteract the gate . We measure in the basis

{ [(Ri ® ﬁ,ﬁ;) (]1 ® Z}n) ZTF Dy, n) : Ty € Rep(Q),n € N} : (89)

The effect of this measurement is
Fq n
= £
RFz §"1
z}.

g n
»f £ T
S
by zl
ey O @—f——= =0

Iy n
+ +
RFz ﬁnl
+
O [ O by HEBE

+
oLl

Finally, we measure the red even site in the basis:

+
Ozl ]

{(®i2l) wracaf. (90)

The effect of this measurement is

We now see that we can perform universal single-qudit
quantum computation in the Q and N virtual spaces sep-
arately. Thus far, the only difference from the abelian
case of Sec. VIIIB1 is the additional rotation by Xt in
the measurement basis on the center two sites, which was
necessary to compensate for the X gate.

However, in order to achieve single-qudit universality
on the G qudit, we must achieve two-qudit universality
on the pair of @ and N qudits. Performing universal
single-qudit rotations on the () and N virtual spaces is
not sufficient; we must also introduce a two-qudit im-
primitive gate — a gate which generates entanglement —
acting between the Q and N virtual spaces.

The imprimitive gate which we define is a controlled-

multiplication acting between the groups:

K= Jafal ® X xq),
N =3 ladal © X o).

where A : Q — N is a map from @) to N which generates
entanglement. Notice that A acting on the two central
qudits can be pulled from the physical legs to the virtual:

@. (92)

(91)

N




We can repeat the preceding analysis and show that

we can enact A on the virtual space via an appropriate
series of measurements.

We first measure the odd blue site in the basis
{ITn) : T € Rep(N)}, (93)

resulting in the following action:
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Next, we measure the two center sites in the basis

{[K (1®Z}n) ET]T|Fq,n>:quRep(Q),n€N}, (94)

resulting in

& n
T
N sa
7. IR 7 .

Finally, we measure the remaining red even site in the basis:

{(ZR)TICD:QGQ}? (95)

resulting in

We now see that we can implement X virtually by mea-
suring the center two sites in the basis Eq. (94). We prove
in Appendix H 1 that this gate is imprimitive so long as
A(q) depends non-trivially on q.

In summary, we have shown that MBQC in the case
where G is a split extension of abelian groups can be un-
derstood as two instances of the abelian MBQC protocol
running in parallel. We saw that we can compensate for
the entangling gate X in our choice of measurement bases
and that we can generate entanglement between the two
abelian MBQC rails via the gate X It is also possible
to treat the case where G is a successive split extension
involving several abelian groups similarly, which is de-
picted schematically in Fig. 5.

3. G Solvable

If G is solvable, it can be constructed from abelian
groups using extensions. The example discussed in the
previous section — namely, a group G formed via a split
extension of the abelian groups @ and N — is a simple
example of a solvable group. For any solvable group,
the cluster state MPS tensors can be decomposed into
a set of abelian MPS tensors (corresponding to the set
of abelian groups) and unitaries (capturing the details
of the extensions of these abelian groups), generalizing
Eq. (86). In general, this decomposition will be of the
form Fig. 6.

It is not obvious how to generalize the strategy dis-
cussed in the previous section to this class of groups be-
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FIG. 5. MPS decomposition for the G cluster state based on
a group constructed from split extensions of abelian groups.
Different colored tensors are cluster states corresponding to
different abelian groups and odd sites are control qudits for
even site(s).

cause the unitaries in the decomposition have overlapping
support. However, because cluster states derived from
solvable groups still admit a decomposition into abelian
groups and unitaries, we suspect that it should be possi-
ble to devise a protocol which performs universal MBQC
using such a state as resource. We leave the details of
this construction to future work.

| | |
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FIG. 6. MPS decomposition for the G cluster state based on
some solvable group. Once again, different colored tensors
are cluster states corresponding to different abelian groups
and odd sites are control qudits for even sites.

4. G not Solvable

In the case where G is not solvable, we cannot decom-
pose G into a set of abelian groups. We are therefore
met with the same problems which arise when trying to
design an MBQC algorithm for non-abelian G directly:
the Z-type Pauli errors are not in general unitary, and
the X-type Pauli errors do not in general commute. We
leave the challenge of designing an MBQC algorithm for
these cases to future work.

IX. DISCUSSION AND OUTLOOK

We have studied the G cluster state as an SPT state
protected by a fusion category symmetry. Our contribu-
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tion to the literature is a study of the microscopic signa-
tures of fusion category SPT order in a relatively simple
lattice model. This allows us to explore fusion category
SPT order in greater detail and with more direct applica-
bility to quantum information applications than in prior
works. This study would be useful in developing a general
microscopic theory of fusion category SPTs as successful
as that of group SPTs. It also presents several technical
contributions, including graphical methods for manipu-
lating the group-based Pauli operators which could be
useful in the study of other exotic lattice models.
Group-Based Pauli Spin Chains. Pauli spin chains
are extremely versatile toy models which, despite their
simplicity, exhibit many interesting phenomena. As we
have pointed out, relatively few of these phenomena have
been generalized to group-valued Hilbert spaces. It is
beneficial to do so not only to study fusion category sym-
metry as we have done, but also to design systems with
on-demand finite group symmetries, to study gauge the-
ories, or to design more complex quantum computational
schemes. Group-based Pauli spin chains also retain the
properties that have made Pauli spin chains so ubiqui-
tous: they are simple to write down and highly versatile.

The techniques we have used to study the G cluster
state are highly applicable in the theoretical analysis of
other group-based Pauli spin chains. We have here de-
veloped both diagrammatic and algebraic methods for
working with group-based Pauli spin chains, and have
already seen how to generalize symmetries, stabilizers,
and edge modes.

With spin degrees of freedom and operators comprised
of Pauli strings, spin chains are also natural models to
study on quantum hardware. This is particularly rel-
evant for researchers interested in quantum simulation
and quantum computing. Group-based spin chains com-
prise a class of exotic models which could be realized in
a quantum simulator. A proposal already exists for en-
coding qudits valued in the dihedral group D3 into quan-
tum hardware [156]. Such proposals also allow for any
quantum computational protocols designed using group-
valued qudits to be implemented directly.

Algebraic Classification of A-SPTs. While classi-
fications of fusion category SPTs in terms of categorical
data exist [60, 62], it is not yet known whether fusion
categories may be classified by an algebraic object (such
as a cohomology group), as is the case for many conven-
tional SPTs. The classification of 1d bosonic SPTs pro-
tected by group symmetries in terms of group cohomol-
ogy [52, 114] has been extremely successful. It has been
essential in formulating the connections between SPTs
and measurement-based quantum computing [135, 137]
and the generation of long-range entanglement [145], as
well as in placing SPT states within the modern cat-
egorical understanding of topological order [47]. It is
therefore a very interesting open question to determine
whether SPTs protected by categorical symmetries can
be classified in terms of some algebraic object. Our dis-
cussion of edge modes in Sec. VA and of constructing



other G x Rep(G)-SPTs in Sec. VII should shed light on
this search, just as similar inquiries in group-symmetric
SPTs point toward the group cohomology classification.

We suspect that it should be possible to derive a clas-
sification of fusion category SPTs in terms of some al-
gebraic object using the methods developed in Ref. 157.
This paper considers MPSs symmetric under the action
of MPOs, which can be cast into the language of bimod-
ule categories. By choosing appropriate categories to de-
scribe finite group symmetry as an MPO, this formalism
recovers the classification in terms of group cohomology
as the solution to a coupled pentagon equation. Repeat-
ing this procedure with a different choice of categories,
chosen to describe fusion category symmetry as an MPO,
will return a different constraint. We conjecture that this
will be a generalized cocycle condition which should be
satisfied by our matrix “phases” I'(g). With this con-
dition in hand, it may then be possible to recognize it
as defining some algebraic object, just as the 2-cocycle
condition (and 2-coboundaries) define the second coho-
mology group. It would also be of significant practical
value to understand how such an object is manifest mi-
croscopically, if one exists.

G cluster state as Gapped Boundary of 2d TO.
We expect that the G cluster state |C) can be derived as a
gapped boundary of the quantum double D(G x Rep(G)).
It is known that the qubit cluster state can be realized
as the gapped boundary of the bilayer toric code where
e1mz and mqey anyons are condensed [5, 158]. Similarly,
the CSS cluster state corresponds to the boundary where
e1es and myms are condensed. More generally for group
G case, we know that Hggpe in Eq. (34) corresponds
to the gapped boundary of D(G x G) where ajas con-
denses for all a € D(G) (which corresponds to the trivial
interface between D(G) and itself after unfolding [159].
Performing an isomorphism relating anyons in D(G) to
D(Rep(@Q)) on the second copy gives a construction of the
G cluster state as a gapped boundary of D(G x Rep(G)).
It would be interesting to work out the microscopics for
this construction.

|C) as an Error Correcting Code. We have repeat-
edly referred to |C) as a generalized stabilizer state, and
it would be interesting to study it as a generalized stabi-
lizer error correcting code. One immediate complication
is that the group-based Pauli operators X4, X4, and Zt
no longer form a group when G is non-abelian. It is un-
clear what algebraic object these operators form under
multiplication, and this question is also directly related
to the classification of the edge modes, as the edge modes
form the same object.

Despite these complications, the stabilizers still serve
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to uniquely specify the G cluster state and could therefore
protect information in a well-defined codespace. We leave
to future work the task of rigorously defining group-based
Pauli stabilizer codes and exploring where they may offer
an advantage over traditional stabilizer codes.

|C) as a Higgs phase of a gauge theory. It has
been recently appreciated that the Z; cluster state is
naturally thought of as the Higgs phase of a Z; gauge
theory [160], where the even/odd sites corresponds to
Z4 matter/gauge fields, respectively. The two stabilizers
of the cluster state can then be thought of as imposing
a Gauss law of the gauge theory, while the other real-
izes the Higgs condensation by proliferating matter fields
connected by Wilson loops. It would be interesting to
establish this viewpoint for non-Abelian groups as well,
both in terms of a G-gauge theory, and perhaps more in-
terestingly in terms of a non-invertible gauge symmetry
Rep(G).

Group-based cluster states in higher dimen-
sions as SPT phases. We expect the analysis in higher
dimensions to be straightforward. In particular, in d spa-
tial dimensions, one can construct a generalized cluster
state by putting Z-type tensors on vertices and X-type
tensors on directed edges of a cellulation of the manifold.
We expect that this cluster state is an SPT state pro-
tected by G x Rep(G)(@~1) symmetry, where Rep(G)(¢—1)
is a (d — 1)-form non-invertible symmetry.

|C) for Hopf Algebras as SPT phases. In general,
generalized cluster states can be defined for any Hopf al-
gebra [55]. Unlike typical anyon chains [161], such models
live in a local tensor product Hilbert space. It would be
interesting to analyze the SPT properties of these states
in full generality.
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Appendix A: Qubit CSS Cluster State

In this section, we briefly review the CSS cluster state defined on qubits and derive several results which are
generalized in the main text.

1. State and MPS

In the case G = Zs, the G cluster state reduces to the qubit CSS cluster state:

|CSS) =27/ Z l91)1g1 @ g2)92) -~ lgn—1 D gn)IgN), (A1)
{g:}€2Z>

where @ denotes addition modulo 2. This state can be written as an MPS with tensors
Lo —poe+axen, I 10 +xeln. (A2)

These tensors satisfy the following identities:

= [0}0| ® [1) + |1)1| ® [0) =
*

=101+ X®0) = - o

= 0)0] @ |0) — 11| @ [1) = = ,
— Azfe— —o{z}

=18[0)- X @)= ,
*

= |0X0| ® |0) + |1)X1]| ® |1) = 7

.

=1®[0)+X®|[1) =

S

The corresponding product state is |1o) = |[+,0,+,0,...).

:

2. Hamiltonian and Symmetries

The qubit CSS cluster state is the ground state of the commuting stabilizer Hamiltonian
H=— Z X(1+1)X(Z+2)X(2+3) + Z(i)Z(i+1)Z(i+2). (A3)
i odd

This Hamiltonian is obtained from the usual cluster state stabilizers by performing a Hadamard gate on the middle
qubit of each string. This Hamiltonian has global symmetries

A= [ x9. B= ][ 2. (Ad)
i odd i even

These symmetries commute with one another and each square to 1. Together, they form a representation of the
symmetry group Zs X Zs.
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3. Gauging the Ising Model

Consider the quantum Ising model without transverse field,

H=-Y 70z, (A5)
7

X=1LX (1) is a global symmetry, but X (9 is not a local symmetry. However, we can promote X (V) to a local symmetry

through minimal coupling to a background Zs gauge field. Define Pauli operators for the gauge sites X(1/2) 7(i£1/2)
The local symmetry action is given by the Gauss law X (~1/2 X X(+1/2) and in order for the kinetic term ZZ to
commute with the local symmetry action, it must be minimally-coupled resulting in Z® Z(i+1/2) z(i+1)  Indeed, we
see that [Z() Z(i+1/2) z(+1) x(—1/2) x () X (+1/2)] = (. In general, the gauged Hamiltonian includes the gauged ZZ
term, a term energetically enforcing the gauge symmetry, and a term enforcing zero flux. In an open 1d chain there
is no flux term and the Hamiltonian becomes

Hyauged = — Z Z0 Z(i4+1/2) Z(i+1) | x(i=1/2) x(§) x (i+1/2) (A6)
This is precisely the Hamiltonian for the qubit CSS cluster state, up to a trivial rescaling of position coordinates.

4. String Order Parameter

In the qubit setting, the string order parameter is simply a string of Pauli Z operators which acts on two odd sites
spaced by 2k as well as every intermediary even site:

k—1
Slk) — 7(@) H 7 (+1427) | 7(i+2k) (A7)

Jj=0

We can see Diagrammatically that SR acts trivially on the CSS cluster state:

s 99 - : - fess)

(A8)
so that (CSS|S(*) |CSS) = 1, as expected.
We can see that the product state has vanishing expectation value of the string order parameter because it has no
effect on the even sites, and flips the odd endpoints from |+) to |—):

80 o) = 8 |+,0,+,0,...)

:|+7O7"',_ia"'7_i+2k7~-~>

= <w0|‘§‘(l,/€) W’O) = <+707"'7+’i7"'7+i+2k:7”"+707~‘~7_i7~~~7_i+2k‘7~~~>
=0.

(A9)

5. Edge Modes

Consider the action of the global symmetries A and B on the qubit CSS cluster state:

AICSS>:F :

e e e e E3

Sl S WP G - P WP NP WP V- I
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From this diagramtic derivation, we can read off the edge modes
A xBxEBE B 70 7R (A10)

acting on the edge Hilbert space Hy ® Hg.
Notice that

{(xP, 2z} = (X, 70} = o, (A1)

so that the left and right operators generate the single-qubit Pauli algebra on the left and right ends of the chain,
respectively. Recognizing that the Pauli matrices are a projective representation of Zs x Zy, we have found edge
modes transforming as a projective representation of the protecting symmetry, as is expected in a 1d SPT phase with
on-site group symmetry.

6. Topological Response

There is only a single nontrivial Zs-flux state, which corresponds to g = 1:
|CSSy) =27 (V=172 Z l91)191 @ g2)|92) - - lgn—1 @ (91 © 1)). (A12)
9i€Z2

This state is obtained from |CSS) by twisting the boundary condition from one end of the chain to the other. It
acquires a nontrivial charge under B:

B|Cssl> — (71)91+92+92+"'+9N—1+9N—1+!]1+1|CSSl> — ,|CSSl>’ (A13)

where we have used the fact that 2g; is even for all g; in Zy. Similarly, there is only a single nontrivial Rep(Zs)-flux
state corresponding to the sign irrep I' =T _:

CSSp_) =27 D2 N T (g1)ga) g1 @ g2)lga) -+ lgn—1 @ 1) (A14)
{9i}€Z2

We find that this state is nontrivially charged under A:

Ajcssy ) =27 D2 N T (g1)|gi @ g @ ga)lg2 @ 1) -+ |gn 1 © g1)
{g:}€2Z>

=2 (N=1/2 Z I_(g1® Dlg1)lgr & g2)lg2) -+ - lgn—1 ® g1) = —|CSSp_).
{9i}€Z2

(A15)

Because Z, is abelian, it is easy to see that the response is symmetric. That is, we find a Zs charge of -1 in response
to Rep(Zs) flux, and a Rep(Zz) charge of -1 in response to Zg flux.

The response for the cluster state can be understood from the perspective of charges of one Zs symmetry decorated
on the domain wall of the other Zo symmetry. Inserting a flux generates a single domain wall from which we can see
the charge response [147].

Appendix B: Additional Symmetry

In this section, we seek to better understand the full symmetry group of the G cluster state. There are four
symmetries acting independently, so that the total symmetry group is G, X Gg x Rep(G) x Inn(G). We would like to
understand which symmetries are actually necessary for protection of the SPT phase. For example, it is insightful to
recall that the AKLT model [162] is a non-trivial SPT phase when protected separately either under SO(3) rotations
or time reversal, meaning that weak local perturbations which respect one subgroup while breaking the other will not
lift the degeneracy in the thermodynamic limit. We want to understand whether a similar mechanism is at play here
for the G cluster state.

As alluded to in the main text, this is indeed the case. If we wish to protect the ground state degeneracy, one
sufficient subgroup to preserve is Gg x Rep(G). This can be understood from the fact that the full algebra

{ngF rge G, T e Rep(G)} (B1)
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of a G-qudit is present at each edge, as can be seen in Eq. (43). This was also confirmed numerically in the case
G = Dj3 in Sec. VI A by forming perturbations which respect only Gr x Rep(G) and observing the stability of the
phase.

However, G x Rep(G) may not be the only choice of preserved subgroup which protects the SPT. We can repeat
the edge mode analysis for the symmetry Gp:

O O O O

and we see that we also have an algebra of X-type operators at each edge. Because Z-type operators can be combined
with either left or right X-type operators to span the full algebra of a single G-qudit, this suggests that Gy may be
able to protect the SPT in the case where G is broken. We leave further exploration of this alternative to future
work. We have also not considered the role of spatial symmetries, as our perturbations were translation invariant
with the periodicity of the unit cell. We leave this question to future work as well.

Appendix C: Gauging the Flux Ladder

We can proceed in much the same was as above to gauge the group-based classical Ising model, introduced in [163]
as the flux ladder. The Hamiltonian of this model is given by

H==-% % w2z (C1)

i T'eRep(G)

Notice that H has a global symmetry ?g =11 }g), but Xkéi) is not a local symmetry. We can gauge this symmetry
in the usual way, resulting in the Hamiltonian,

Hgauged = - Z Z Tr [Z;(Z)Z¥+1/2)Zl(—}+l):| —+ Z y§i+1/2)7(gi+l)?gi+3/2) , (02)
i I'eRep(G) geG
where the half-integer sites correspond to gauge sites inserted between the original matter sites. Yéi) is a symmetry

of Hgauged, SO we say that the gauging procedure was successful. Notice that a trivial relabeling of indices shows that
Hgaugea is equivalent to the G cluster state Hamiltonian.

Appendix D: Deriving the Fusion Category Symmetry

Consider the product of two B operators labeled by irreps I'y and T's,

Br,Br,=Tr| [[ 2% |1 | T] 2 (D1)
Recall that Tr[A]Tr[B] = Tr[A ® B, so
= | [[ 2V e [ 2. (D2)
We also know that (AB) ® (CD) = (A® C)(B® D), SO |
=m | [[ 2 oz} (D3)

The tensor product of irreps (of any linear representations, in fact) can be decomposed into a direct sum of irreps
Tk
T

. We then have

D II (Z?Z)%Ff”] - (D4)

according to the fusion rules I'; @ I'; = @, T',,

1 ()"

1 even k

=Tr =Tr

k 1 even
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We finally use the property that the trace of a direct sum is the sum of the traces, so

_ZNll:fFQTr I1 z{

1 even

= > Nikp,Bry. (D5)
k

We now see that

Br, Br, = Z Ni* ., Br, . (D6)
k

This means that B is a fusion category symmetry.
Alternatively, this can be shown in the MPS language:

=" Zr.(9) ® Zr,(9) ® lg)a| = Z ZZrk )@ ladgl = Y NijZre
g

k

In the case where G is Abelian, the algebraic relation (D6) reduces to a group-like relation. One way to see that
this must be true is to recall that

dmdrj = Z Nll:ﬁrj dr,. (D7)
k

For abelian groups, all irreps are one-dimensional, so for each pair (I';,I';), some ngf,rj = 1 while the rest are zero.
This means that for G abelian, we have

Br,Br, = Br,. (D8)

Appendix E: Review of Relationship Between Cluster State and KW Duality

The Kramers-Wannier duality is a mapping which enacts
XXX, ZZ-27Z, Z+727Z---, XX X (E1)

It is also occasionally referred to as the gauging map because it maps a pure matter theory to the pure gauge theory
obtained by gauging the pure matter theory then discarding the matter degrees of freedom. Note that our convention
differs from the more common convention which exchanges ZZ and X.

It was observed in [145] that the qubit cluster state MPS tensor, with odd physical legs flipped to form an operator,
realizes this duality on the symmetric sector of the theory. Namely,

———0O— = —OH——0— (E2a)

—o——o - "o, (E2b)

————————— e (E2¢)
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(E2d)
(E3a)
(E3b)

O = O
e
which are used to implement the duality in the main text.

Appendix F: Edge Modes from Hamiltonian

In the main text, we used the MPS form of the G cluster state to derive the edge modes. However, it is also possible
to do so without refering to the explicit form of the ground state, using only the stabilizer Hamiltonian. We can
rewrite the action of the global symmetries on the G cluster state using the fact that the terms of the Hamiltonian
act stabilize the G' cluster state, so that they can be inserted to the right of the symmetry without changing its effect
on the G cluster state. Let X|j¢cy denote the effective action of an arbitrary operator X on the G cluster state. For

the X-type symmetry A,, we then have

Zgh(:) _ (H ygi)> (?gz)}(gs)?g;)) (ygzx)}gs)}g&)

i odd

(F1)
XK@ . v RN N even
XOK@10 . qw-2F VDKW N odd
We can apply a similar procedure to analyze the Z-type symmetry Br:
B}*h@ =Tr H Z{j)
i even ()
T (220 22| N even
I R i R S ]
c ; - ) (Fz)
Tr | (201 .21®) . (2 Zi® ZWN=8) ZIIN=DY 2N N even
) (2021 (2P 21® 20 ZIND) (28D 2l)], N oda
T |20 2[V 0 2V], N even
R N odd

where we have used the fact that Zg).Z}(i) = ZTF(i).Z(Fi) = 14, because Z is unitary as well as the fact that for even ¢

we have Z if

) — Z;ifl) .Z;(i+1)

on the code space because Z

ti—1 i i+1
1) 50 (40

is a stabilizer for even 1.

It is important to note that this approach has the benefit of not relying on the explicit form of the ground state,
but it also has the drawback of not clearly illustrating how the edge operators reduce to an action on the edge Hilbert
space, as described in the main text.
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Appendix G: String Order Parameter

In this appendix, we will prove that the string order parameter introduced in Eq. (49) of the main text has zero
expectation value in the G x Rep(G)-symmetric product state. We begin by proving Eq. (51) which relates the string
order parameter to the delta function on the group.

Proof.

k—1
e’ 71“ HO) (i+1+25) (i+2k)
66@(117 0 Ji+1+2)gi+2k ZF: G| T\ Ze. l_IOZF Zr

j:

|G|_ 5(4,0 dl = i+1+25) i+2k
- Sliit2k) | Ay ZT H 7 (i+142j) .Z(1+)

= o (1)
61 =1 guivy !
_ 78(271-&-276) .
G| G|
w16 g S
=S 1G] - 1 e,3i(T1520 git1+2;5)git2k |G| —1
O

We are now prepared to prove that the string order parameter has vanishing expectation value in the product state

|tho).
Proof.
(i k) Gl 1
S W > |G| 5gi7gi+2k ‘w()) |G| 1 |1/10>

1 1
= —=T O o 1 ey Giye oy G geod) T T
|G| -1 Z gngq,+2k‘ )€, Y Ji+2k > ‘G‘ 1 WJO>

9i 9i+2k
1
:|G|7_1Z|1767"-agi5-"agia"'> |G‘_1WJO>
(i,k) . . _ _ (G2)
<1/} |S W) > ¢0|Z|1 €, "7917"'7927"'> |G|—1 <7/}0W}0>

1
o (L1 Y g —
CEEAaES a1

__1 Gy 1
|G| —1 \/@2 |G| —1

=0.

Appendix H: MBQC

In this appendix, we will prove two claims which we used in our discussion of universal MBQC in the main text.

H
1. Proof that A is Imprimitive

Consider a generic separable state in C[Q] ® C[N]:

[YQnN) Z cqla) <Z dn |n>> = Z Cqdn g, ) - (H1)

qeQ neN qgeEQ,nEN
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Acting on this state with Xh we find:
_>
A |¢QN> = Z Cqlyp lg, A(g)n) . (H2)
qeEQ,NEN

As long as A(q) depends non-trivially on ¢ — that is, there exists at least one pair g1, g2 € @ such that A(q1) # A(q2)
— then this state is not separable, and the gate A is imprimitive.

2. Proof of Single-Qudit Universality

In this section we will prove that the gate set Rg is universal for single G-qudit quantum computation.

Proof. Let G be a finite abelian group and consider the gate set Rg. We want to show that the lie algebra
a generated by the generators of the rotations in Rg is equivalent to su(|G|). We can do this by calculating
commutators of elements of a and showing that this procedure produces |G|?> independent Hermitian operators.
We will show that there exists one independent Hermitian operator per group element besides the identity, each
irrep besides the trivial irrep, and each product thereof. Along with the identity operator, this results in a total
of (|G| = 1)+ (|G| = 1) + (|G| — 1)?> + 1 = |G|? independent Hermitian operators. It is clear from the form of the
rotations in Eq. (76) that we already have one Hermitian operator per nontrivial group element and irrep, so we will
now proceed to construct the products of these operators by evaluating commutators.

Case 1) Let I'(g) # 1. This also implies that I'(g) # 1.

Case 1.1) Let g =g, I =T,

We have X4, Zr € a. We can then evaluate XZ,ZF =(1- F(g))ngF, so that XZZF € a. This commutator
is nonzero because we have taken I'(g) # 1.

Case 1.2) Let g=g, I # I'T.
We have X4, (Zr + th)7 i(Zr — ZTF) € a, so we can construct the following elements of a:

X, 20+ 2] = 1 -T() X, (20 + 2})
[(Xyoitzr - zlt)} = (1-T(9))iX,(2r - 2}).

This means that ?Q(ZF + Z ), z? (Zr — ZL) € a. We see that we generate two new basis elements, which
accounts for the fact that we have used both F and I'f.

Case 1.3) Let g # g, I =TT
We have (X4 + g), i(Xg— X}T , Z1 € a, so we can construct the following elements of a:

X+ X}, 20) = (1 -T@)(X, + X))z
i, - X)), 20] = 1 - TR, - X))

Therefore, (?g + )?I,)Zr, i(yg - YL)ZF € a. As above, we generate two new basis elements, which accounts
for the fact that we have used both g and g.

Case 1.4) Let g # g, I #T'T.
We have (79 + 7 Y - )_(>T (Zr + 2] r), i(Zr — Z1 ) € a, so we can construct the following elements of a:

[Y +?T,(ZF+ZT (Y ZF+YTZ*)+1—FQ (YTZFJrXZ ZT)

[ X, )?T,(ZerZT )| =i(1=T(9)) (Y prYTZT)JrZ(l— ) ( Xizr+X ZT)
(X, +X)).izr - > —1(9)) (X,2r - X} 2}) +i(1-T(9) (X 2r - X,2})
[z’(?g —X1),i(Zr - z}) ~1(9)) (X,2r + X} 2}) - (1-T(3)) (—Y*ZF -X,7}).

g9
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By summing these elements with various sets of coefficients, we can generate:

Coefficients Sums To
1—Re[I'(g)] —ilm[I'(g)] t t
((F(g)—l)(F(ﬁ)—l)’O 0, To—D @)= 1)) (ng + ng)(zr + Z)
ilm[I(g)] 1—Re[l'(g)] . i ot
(0. i mes g 0) iR, + Xz - 2h)
1-Re[['(g)] iIm[T(g)] . 2t t
(Ov T(@-D(T(9-1)’ T(9)— 1<r(g> Iy ) Z(Yg 79)(ZF+ZF)

(%’OO 1( Fo=T T T 1)) (?Q_YT)(ZF_ZJ{“)

We can therefore conclude that Y X}T (Zr + Al ) z? + XZT (Zr — ZT Y YT (Zr + ZT

Y YT ZF—ZT ca.

Notice that when I'(g) = 1, the commutators in Case 1 evaluate to 0. In order to generate basis elements
corresponding to these combinations, we will have to circumvent this issue by taking further commutators.

Case 2) Let I'(g) =1

By the well-known fact that the intersection of the kernels of all irreducible characters of a finite group is trivial (the
only g € G such that I'(g) = 1 for all I’ € irr(G) is e), there exists some irrep I'' such that I''(g) # 1 since g # e.
Because in the case of abelian G the irreps form an abelian group, there also exists some I'” such that I = T.
Furthermore, because I''(¢g) # 1 and I'"(9)T"(g) = T'(g) = 1, we know that I'(g) # 1.

Case 2.1) Let g=g, I =TT
Because I is real, IV and I'” must either both be real or both be complex. We will consider these cases separately:

Case 2.1.1) Let IV, T real.
We know that Zp» € a, and we see from Case 1 that 7 ¢Zr € a. We can then evaluate

Xz gZr, Zrv] = (1 =T"(g Xz ¢Zr, so that X ¢Zr € a. This is nonzero because I''(g) # 0, and we
have used the fact that Zp/Zpu = Zr.

Case 2.1.2) Let IV, T complex

We know that Y (Zr + Zr/ , 17 (Zp — th,), (Zprn + th,,), i(Zrv — th,/) € a. This means that we can
construct the followmg elements of a:

[Y (Zr + 2L, (Zr0 + 25)| = (1 -T"(g (Y Zr+ X JZrirn ) +(1-T"(g ()_f Zr+ X JZrrn )
[? (Zr + ZL,),i(Zrr — F,,)' —i(1-T"(g (? Zr+ X yZrapn ) +i(1=T"()) (- X, 20— X JZrrn)
(X o200 = 20, (Zew + 280)] =10 = T"(9)) (R o 20 = R Zrirn ) +i01 = T"(@)) (=X 20 + Xy Zrrnt )
{i?g(zp, — 2L, i(Zr - 2} = —(1-T"(g)) (Y Zr—- X WZrnrr) — (1-T"(g (Y Zr— X ZF,M)

By summing these four elements with appropriate coefficients 7(1 —i,—1,—1), we find (1 —T"(g ? ¢Zr,
so that ? ¢ZT € a.

Case 2.2) Let g=g, ' #I'f.
Because I is complex, we know that I and I'” cannot both be real. This leads to two distinct cases:

Case 2.2.1) Without loss of generality, let I be real, I’ be complex.
We know that ?QZFI, (Zrr + th,,), i(Zrr — Z},,) € a. This means that we can construct the following

elements of a:
(Xo2Zv, (zr0+ 20| = (1=1"(9)) (X, 20 + X, 2},

[Xo2r iz — 20| =i - 1"(9)) (Xy2r - X,21).
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This means that }g(Zr + th), i?g(Zr - ZJIE) €a

Case 2.2.2) Let IV, T complex

We know that X ¢(Zr + ZF,) iX g¢(Zrr — Z;ﬂ,), (Zpr + Z}:,,), i(Zrv — th,,) € a. This means that we can
construct the followmg elements of a:

[YQ(ZFI + 2L, (Zrr + 2L)] = (1 - T"(g) X, (Zr + Zpirn + 21+ Zwm) ;
[Yg(Zp/ + Z;,),'I:(ZFH - th,,) - Z(l - F”(g))?g (Zl" + ZF/TF// - th - ZF'F”T> 5

[i}g(ZF/ — ZTF,), (ZF” + ZTF,,)_ = Z(l - F//(g))}q (Zl" - ZF/TF// - ZTF + ZF/F/H‘) 5

[z?g(zp, — 2L, i(Zr — 2| = -1 - ()X, (2 = Zrarr + 2L = Zow ).

By summing the first and last elements with the coefficients %(1 —1), we find (1 -T"(g )79 Zr + ZT ). By
summing the second and third elements with the coefficients % (1,1), we find (1 —T"(g 279 Zr — %) T . We
can therefore conclude that ? (Zr + ZJr 27 (Zr - ZT) € a.

Case 2.3) Let g # g, [ =TT.
Because I' is complex, we know that IV and I'” cannot both be real. This leads to two distinct cases:

Case 2.3.1) Let IV, T be real.

We know that ? + ? )Zp/ i( ? 7 )Zr:, Zr» € a. This means that we can construct the following
elements of a:

[(Yg + X020, Zro] = (1-T"(g (XZ Zr+ YTZF)
[z‘(?g ~ XNz, Zro| =i(1-T"(g (? Zr — ?TZF)

This means that (}g + Y;)Zp, i(}g - ?L)ZF € a.

Case 2.3.2) Let I",T” be complex.
We know that (X, +? ) Zr 420, i(X g = X D) (Zr+ 20, i(X g+ X5 (2 — 21, (X g = X 1) (20— 21),
(Zprn + ZF,/), i(Zpr — Z;/,) € a. This means that we can construct the following elements of a:

[(Yg + X020 + 21), (Zro + zl)| = (1-1"(9)) ( (X, + X120+ X g Zpnp + kazr,m)
T (1-T"(g ( (Xy+ X0 Zr + X1 Zpapn + X ZF,F,,T)
[(Yg + X200+ 28),i(Zrn — Zl)] =i -1"(g (Xy— X120+ X g Zpapn — ?TZF,F,u)
+i(1-T"(g)) <(,§> + X2 + X Zrare — Xy Zrirn )
iRy + X @r - 28, (200 + 200)| =i - T7(9) (R = X} 20— Xy Zrivs + X[ Zrn)
+i(l-T"(g)) ((—Yg +X1)2r = X Zrirn + Xy Zrient)
[i(Xﬂ, + X120 — 21),i(Zr — 2l)| = -1 -1"(9)) (( (Xy+ X120 = Xy Zpapn — YTZFW)
—(1-1"(9) (Xy + X)) Zr = X} Zrarn = Xy Zrin ),
[i(X, = X)) Zr + 21, (200 + 20| =i(1-T"(g ( (X=X} 2r + Xy Zrirn — X | Zrirn )
+i(1-T"(9)) (( (X, = X2 = X1 Zpap + X WZrin )
[z‘(?g — X0 (Zr + 20, i(Zen — Z},,)} = (1-T"(g ( (Xy+ X020 + X g Zpnps + X1 ZF,M)




( 1—\//
(&, - (e - 20, (200 + Z;,,)} P
I‘\//

(X, =Xz -

ABRI ZM =i(1-T"(g

(1 _ Fl/

By summing these elements with the coefficients 411(1 0,0, —

40

) ( Xy - X0 Zr = X 2y - X me>

( o+ X020 = X Zipn — X1 i Zrirn )

)) ( Xy - XD 2o+ X Zpips + X ZF,M) ,

( (X, = X2 = X ) Zpapn + X1 §Zrir )
( (X, = X Zr+ X1 Zpip — X Zr,m)

1,0,-1,1,0), we find (1—T"(g))(X, + X })Zr.

By summing these elements with the coefficients Z(O’ 1,1,0,1,0,0,1), we find (1 — F”(g))i(yg — ?T)ZF.

We can therefore conclude that 7 + } VZr, i( ? — Xk

Case 2.4) Let g # g, I #T'T.

g
ZFECL

Because T' is complex, IV and T must either both be real or both be complex. We will consider these cases

separately:

Case 2.4.1) Without loss of generahty7 let IV be complex I' be real.

We know that (X, + X [)(Zr+ Z}), i(X,
ZF//

Y )(ZF’ +ZF/
€ a. This means that we can construct the following elements of a

X+ X0 (20— 21), (X g =X 1) (20 - 21),

[(Y + X0 (20 + 21), Zro| = (1-T"(g (? Zr+ X1zl + X1 zp + X J7L).

[z(?g X0 (2 + 21), Zr| =i(1-T"(g (Y Zr- X1zl -Xizp 4+ X,2 1,

{z(? + X0 (Zr - ),ZFH} —i(1-T"(g (? Zr- X1zl + Xiz0 - X,z )

[(?g Xh(2r -2 2L). 2] = (1-T"(g (Y Zr+ X1zl - Xzp - ?gz}) .
This means that (X ,+ X 1) (Zr+20), i(X g = X D) (Zr+21), i(X g+ X1)(Zr—21), (X g X1)(Zr—Z}) € a
Case 2.4.2) Let IV, T be compler:
We know that (X, +YT ) Zr 420, i(X g = X D) (Zr+ 20, i(X g+ X5 (20— 21, (X g = X 1) (21— 21),

(Zpn + Z1.),
(R + )20+ 2L), (200 + 21)] = (1-T"(g
+(1-T"(g

(X, + Xz + 21,0200 - 21)] =i

+i(1-T"

iRy + X )20 — 2L), (200 + 21)] = i(

(Zrn — Z},,) € a. This means that we can construct the following elements of a:

(7 ZF—FYTZ +7 er,rv/ +?TZF’F”T)

(Y ZT ?;ZF + ?;ZF/TF// + ?gzlﬂ/r//—r) 3

F” g (Y Zl" — ?;th + YgZF’TF” — ?;ZF’F”T)
)) ( YQZTF + ?:{SZF + YgZF/TF// — YQZF’F”T) 5
1-\// g (? ZI‘ - ?;Z} - YQZF’TF” + };ZF’F”T)

+ Z(l - F” g (—7 ZT + ?TZF - YTZFM'FH + ? ZF/FNT) 5

[i(X,+ X))z -
(1 _ 1'\//

iRy = X))(20 + 20), (Zro + 200)] =i -T"(g

+i(1—-T"(g

ZP,),’L’(ZFN - ZTF”)i| == —(1 - F” g (? Z]_" + YTZ - ? Zr/tr\// - } err//’r)

(Y ZT + ?TZF - ?TZI‘/’[F// - ? ZF/F//T)
(Y ZF —_ ?TZT + Y ZF/TFH } ZF/F/M—)
(? Zl - ?;ZF — X};ZMF,, + Ygzmw) ,
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[i(?g ~ X0 (20 + 20, i(Zen — 2L )} = —(1=1"(g)) (X 20 + X 21 + X ) Zpops + ?;zr,m)
) ( X, 2k - X120 = X Zpop — X}QZF,F,,Q :
{()_()g ~ X0z - ZL), (20 + Z},,)} —(1-T"(g ()7 Zr+ X1z} - X Zponps — Ygzp,m)
)) ( X, 2t - X120+ X1 Zpopn + YQZFT,,T) ,
[(XZ — XN (2 — 21, i(Zrn - th,,)} —i(1-T"(g (Y Zr— X321 = X Zrnpn + Xk;zr,m)
+il-T"(g (? Zh - X120 + X1 Zpnps — YQZF,M) .

F//

1—\//

By summing these elements with various sets of coefficients, we can generate:

Coefficients Sums To

1-Re(I'"'(g)) 1 1 1 —ilm(I'"' (g)) ilm(T"’ (g)) T i
(st e 0:0:3 (s + 1) 0 sy g i 0) | (Ko + X9 (Zr + 20)

1-Re(I"'( 1-Re(I'"(g)) iIm(I'"'(g)) iIm(l"”(g)) . T ot
(0, st Sy T O s O s ) |i(K+ X)(Ze — 21

im(I""(g)) im(I""(g)) 1—Re(I'"'(g)) 1—Re(I'"'(9)) ; _ ¥t f
(0, sy e O a0 a1~ X + 7))

iIm (1 (9)) —ilm (I (9)) (1 . 1 Re(I” () R0z gt
(rrro=m 0.0, sy 04 (rry=r + =) = 0) | Ky — X))(@r - 20)

We can therefore conclude that ? + YT (Zr + ZJr X} + YT (Zr — ZJr Xz YT (Zr + ZT

? YT ZF—ZT EC(

Having demonstrated that we can construct (|G| — 1)? independent Hermitian operators, in addition to the identity
and the 2|G| — 2 operators with which we began, we can conclude that a = su(|G|).
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